Lucene4.3进阶开发之纯阳无极(十九)
程序员文章站
2022-05-17 09:30:51
...
原创不易,转载请务必注明,原创地址,谢谢配合!
http://qindongliang.iteye.com/blog/2164583
Lucene内置很多的分词器工具包,几乎涵盖了全球所有的国家和地区,最近散仙,在搞多语言分词的一个处理,主要国家有西班牙,葡萄牙,德语,法语,意大利,其实这些语系都与英语非常类似,都是以空格为分割的语种。
那么首先,探讨下分词器的词形还原和词干提取的对搜索的意义?在这之前,先看下两者的概念:
词形还原(lemmatization),是把一个任何形式的语言词汇还原为一般形式(能表达完整语义),而词干提取
(stemming)是抽取词的词干或词根形式(不一定能够表达完整语义)。词形还原和词干提取是词形规范化的两类
重要方式,都能够达到有效归并词形的目的,二者既有联系也有区别
详细介绍,请参考这篇文章
在电商搜索里,词干的抽取,和单复数的还原比较重要(这里主要针对名词来讲),因为这有关搜索的查准率,和查全率的命中,如果我们的分词器没有对这些词做过处理,会造成什么影响呢?那么请看如下的一个例子?
句子: i have two cats
分词器如果什么都没有做:
这时候我们搜cat,就会无命中结果,而必须搜cats才能命中到一条数据,而事实上cat和cats是同一个东西,只不过单词的形式不一样,这样以来,如果不做处理,我们的查全率和查全率都会下降,会涉及影响到我们的搜索体验,所以stemming这一步,在某些场合的分词中至关重要。
本篇,散仙,会参考源码分析一下,关于德语分词中中如何做的词干提取,先看下德语的分词声明:
接着,我们具体看下,在德语的分词器中,都经过了哪几部分的过滤处理:
OK,我们从源码中得知,在Lucene4.x中对德语的分词也做了向前和向后兼容,现在我们主要关注在lucene4.x之后的版本如何的词形转换,下面分别看下
result = new GermanNormalizationFilter(result);
result = new GermanLightStemFilter(result);
这两个类的功能:
下面看下,在GermanLightStemmer中,如何做的词干提取:源码如下:
具体的分析结果如下:
最后,结合网上资料分析,基于er,en,e,s结尾的是做单复数转换的,其他的几条规则主要是对非名词的单词,做词干抽取。
原创不易,转载请务必注明,原创地址,谢谢配合!
http://qindongliang.iteye.com/blog/2164583
http://qindongliang.iteye.com/blog/2164583
Lucene内置很多的分词器工具包,几乎涵盖了全球所有的国家和地区,最近散仙,在搞多语言分词的一个处理,主要国家有西班牙,葡萄牙,德语,法语,意大利,其实这些语系都与英语非常类似,都是以空格为分割的语种。
那么首先,探讨下分词器的词形还原和词干提取的对搜索的意义?在这之前,先看下两者的概念:
词形还原(lemmatization),是把一个任何形式的语言词汇还原为一般形式(能表达完整语义),而词干提取
(stemming)是抽取词的词干或词根形式(不一定能够表达完整语义)。词形还原和词干提取是词形规范化的两类
重要方式,都能够达到有效归并词形的目的,二者既有联系也有区别
详细介绍,请参考这篇文章
在电商搜索里,词干的抽取,和单复数的还原比较重要(这里主要针对名词来讲),因为这有关搜索的查准率,和查全率的命中,如果我们的分词器没有对这些词做过处理,会造成什么影响呢?那么请看如下的一个例子?
句子: i have two cats
分词器如果什么都没有做:
这时候我们搜cat,就会无命中结果,而必须搜cats才能命中到一条数据,而事实上cat和cats是同一个东西,只不过单词的形式不一样,这样以来,如果不做处理,我们的查全率和查全率都会下降,会涉及影响到我们的搜索体验,所以stemming这一步,在某些场合的分词中至关重要。
本篇,散仙,会参考源码分析一下,关于德语分词中中如何做的词干提取,先看下德语的分词声明:
List<String> list=new ArrayList<String>(); list.add("player");//这里面的词,不会被做词干抽取,词形还原 CharArraySet ar=new CharArraySet(Version.LUCENE_43,list , true); //分词器的第二个参数是禁用词参数,第三个参数是排除不做词形转换,或单复数的词 GermanAnalyzer sa=new GermanAnalyzer(Version.LUCENE_43,null,ar);
接着,我们具体看下,在德语的分词器中,都经过了哪几部分的过滤处理:
protected TokenStreamComponents createComponents(String fieldName, Reader reader) { //标准分词器过滤 final Tokenizer source = new StandardTokenizer(matchVersion, reader); TokenStream result = new StandardFilter(matchVersion, source); //转小写过滤 result = new LowerCaseFilter(matchVersion, result); //禁用词过滤 result = new StopFilter( matchVersion, result, stopwords); //排除词过滤 result = new SetKeywordMarkerFilter(result, exclusionSet); if (matchVersion.onOrAfter(Version.LUCENE_36)) { //在lucene3.6以后的版本,采用如下filter过滤 //规格化,将德语中的特殊字符,映射成英语 result = new GermanNormalizationFilter(result); //stem词干抽取,词性还原 result = new GermanLightStemFilter(result); } else if (matchVersion.onOrAfter(Version.LUCENE_31)) { //在lucene3.1至3.6的版本中,采用SnowballFilter处理 result = new SnowballFilter(result, new German2Stemmer()); } else { //在lucene3.1之前的采用兼容的GermanStemFilter处理 result = new GermanStemFilter(result); } return new TokenStreamComponents(source, result); }
OK,我们从源码中得知,在Lucene4.x中对德语的分词也做了向前和向后兼容,现在我们主要关注在lucene4.x之后的版本如何的词形转换,下面分别看下
result = new GermanNormalizationFilter(result);
result = new GermanLightStemFilter(result);
这两个类的功能:
package org.apache.lucene.analysis.de; /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.io.IOException; import org.apache.lucene.analysis.TokenFilter; import org.apache.lucene.analysis.TokenStream; import org.apache.lucene.analysis.tokenattributes.CharTermAttribute; import org.apache.lucene.analysis.util.StemmerUtil; /** * Normalizes German characters according to the heuristics * of the <a href="http://snowball.tartarus.org/algorithms/german2/stemmer.html"> * German2 snowball algorithm</a>. * It allows for the fact that ä, ö and ü are sometimes written as ae, oe and ue. * * [list] * <li> 'ß' is replaced by 'ss' * <li> 'ä', 'ö', 'ü' are replaced by 'a', 'o', 'u', respectively. * <li> 'ae' and 'oe' are replaced by 'a', and 'o', respectively. * <li> 'ue' is replaced by 'u', when not following a vowel or q. * [/list] * <p> * This is useful if you want this normalization without using * the German2 stemmer, or perhaps no stemming at all. *上面的解释说得很清楚,主要是对德文的一些特殊字母,转换成对应的英文处理 * */ public final class GermanNormalizationFilter extends TokenFilter { // FSM with 3 states: private static final int N = 0; /* ordinary state */ private static final int V = 1; /* stops 'u' from entering umlaut state */ private static final int U = 2; /* umlaut state, allows e-deletion */ private final CharTermAttribute termAtt = addAttribute(CharTermAttribute.class); public GermanNormalizationFilter(TokenStream input) { super(input); } @Override public boolean incrementToken() throws IOException { if (input.incrementToken()) { int state = N; char buffer[] = termAtt.buffer(); int length = termAtt.length(); for (int i = 0; i < length; i++) { final char c = buffer[i]; switch(c) { case 'a': case 'o': state = U; break; case 'u': state = (state == N) ? U : V; break; case 'e': if (state == U) length = StemmerUtil.delete(buffer, i--, length); state = V; break; case 'i': case 'q': case 'y': state = V; break; case 'ä': buffer[i] = 'a'; state = V; break; case 'ö': buffer[i] = 'o'; state = V; break; case 'ü': buffer[i] = 'u'; state = V; break; case 'ß': buffer[i++] = 's'; buffer = termAtt.resizeBuffer(1+length); if (i < length) System.arraycopy(buffer, i, buffer, i+1, (length-i)); buffer[i] = 's'; length++; state = N; break; default: state = N; } } termAtt.setLength(length); return true; } else { return false; } } }
package org.apache.lucene.analysis.de; /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.io.IOException; import org.apache.lucene.analysis.TokenFilter; import org.apache.lucene.analysis.TokenStream; import org.apache.lucene.analysis.miscellaneous.SetKeywordMarkerFilter; import org.apache.lucene.analysis.tokenattributes.CharTermAttribute; import org.apache.lucene.analysis.tokenattributes.KeywordAttribute; /** * A {@link TokenFilter} that applies {@link GermanLightStemmer} to stem German * words. * <p> * To prevent terms from being stemmed use an instance of * {@link SetKeywordMarkerFilter} or a custom {@link TokenFilter} that sets * the {@link KeywordAttribute} before this {@link TokenStream}. * * * *这个类,主要做Stemmer(词干提取),而我们主要关注 *GermanLightStemmer这个类的作用 * * */ public final class GermanLightStemFilter extends TokenFilter { private final GermanLightStemmer stemmer = new GermanLightStemmer(); private final CharTermAttribute termAtt = addAttribute(CharTermAttribute.class); private final KeywordAttribute keywordAttr = addAttribute(KeywordAttribute.class); public GermanLightStemFilter(TokenStream input) { super(input); } @Override public boolean incrementToken() throws IOException { if (input.incrementToken()) { if (!keywordAttr.isKeyword()) { final int newlen = stemmer.stem(termAtt.buffer(), termAtt.length()); termAtt.setLength(newlen); } return true; } else { return false; } } }
下面看下,在GermanLightStemmer中,如何做的词干提取:源码如下:
package org.apache.lucene.analysis.de; /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * This algorithm is updated based on code located at: * http://members.unine.ch/jacques.savoy/clef/ * * Full copyright for that code follows: */ /* * Copyright (c) 2005, Jacques Savoy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. Redistributions in binary * form must reproduce the above copyright notice, this list of conditions and * the following disclaimer in the documentation and/or other materials * provided with the distribution. Neither the name of the author nor the names * of its contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * Light Stemmer for German. * <p> * This stemmer implements the "UniNE" algorithm in: * <i>Light Stemming Approaches for the French, Portuguese, German and Hungarian Languages</i> * Jacques Savoy */ public class GermanLightStemmer { //处理特殊字符映射 public int stem(char s[], int len) { for (int i = 0; i < len; i++) switch(s[i]) { case 'ä': case 'à': case 'á': case 'â': s[i] = 'a'; break; case 'ö': case 'ò': case 'ó': case 'ô': s[i] = 'o'; break; case 'ï': case 'ì': case 'í': case 'î': s[i] = 'i'; break; case 'ü': case 'ù': case 'ú': case 'û': s[i] = 'u'; break; } len = step1(s, len); return step2(s, len); } private boolean stEnding(char ch) { switch(ch) { case 'b': case 'd': case 'f': case 'g': case 'h': case 'k': case 'l': case 'm': case 'n': case 't': return true; default: return false; } } //处理基于以下规则的词干抽取和缩减 private int step1(char s[], int len) { if (len > 5 && s[len-3] == 'e' && s[len-2] == 'r' && s[len-1] == 'n') return len - 3; if (len > 4 && s[len-2] == 'e') switch(s[len-1]) { case 'm': case 'n': case 'r': case 's': return len - 2; } if (len > 3 && s[len-1] == 'e') return len - 1; if (len > 3 && s[len-1] == 's' && stEnding(s[len-2])) return len - 1; return len; } //处理基于以下规则est,er,en等的词干抽取和缩减 private int step2(char s[], int len) { if (len > 5 && s[len-3] == 'e' && s[len-2] == 's' && s[len-1] == 't') return len - 3; if (len > 4 && s[len-2] == 'e' && (s[len-1] == 'r' || s[len-1] == 'n')) return len - 2; if (len > 4 && s[len-2] == 's' && s[len-1] == 't' && stEnding(s[len-3])) return len - 2; return len; } }
具体的分析结果如下:
搜索技术交流群:324714439 大数据hadoop交流群:376932160 0,将一些德语特殊字符,替换成对应的英文表示 1,将所有词干元音还原 a ,o,i,u ste(2)(按先后顺序,符合以下任意一项,就完成一次校验(return)) 2,单词长度大于5的词,以ern结尾的,直接去掉 3,单词长度大于4的词,以em,en,es,er结尾的,直接去掉 4,单词长度大于3的词,以e结尾的直接去掉 5,单词长度大于3的词,以bs,ds,fs,gs,hs,ks,ls,ms,ns,ts结尾的,直接去掉s step(3)(按先后顺序,符合以下任意一项,就完成一次校验(return)) 6,单词长度大于5的词,以est结尾的,直接去掉 7,单词长度大于4的词,以er或en结尾的直接去掉 8,单词长度大于4的词,bst,dst,fst,gst,hst,kst,lst,mst,nst,tst,直接去掉后两位字母st
最后,结合网上资料分析,基于er,en,e,s结尾的是做单复数转换的,其他的几条规则主要是对非名词的单词,做词干抽取。
原创不易,转载请务必注明,原创地址,谢谢配合!
http://qindongliang.iteye.com/blog/2164583
下一篇: lucene index 索引