欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

hive将HQL转换为MR任务执行

程序员文章站 2022-03-08 08:37:19
...

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能.说白了,hive就是MapReduce客户端,将用户编写的HQL语法转换成MR程序进行执行。那么,hive是如何实现将hql语法转换成Mr的呢?
hive将HQL转换为MR任务执行
总的来说,Hive是通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。

1)用户接口:Client

CLI(hiveshell)、
JDBC/ODBC(java访问hive)、
WEBUI(浏览器访问hive)
2)元数据:Metastore

元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;

默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore

3)Hadoop

使用HDFS进行存储,使用MapReduce进行计算。

4)驱动器:Driver

(1)解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。

(2)编译器(Physical Plan):将AST编译生成逻辑执行计划。

(3)优化器(Query Optimizer):对逻辑执行计划进行优化。

(4)执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。

演示:可以使用explain命令,查看语法树,即hive先将sql语法转成对应的语法树

explain select * from mytest_staff_info_demo4_cp1 where statis_date='20180229' order by name limit 3;

还可以使用explain extended 查看更多信息。

explain extended select * from mytest_staff_info_demo4_cp1 where statis_date='20180229' order by name limit 3;

Hive将SQL转化为MapReduce任务整个编译阶段分为六个阶段:

  1. Antlr定义SQL的语法规则,完成SQL词法,语法解析,将SQL转化为抽象语法树AST Tree
  2. 遍历AST Tree,抽象出查询的基本组成单元QueryBlock
  3. 遍历QueryBlock,翻译为执行操作树OperatorTree
  4. 逻辑层优化器进行OperatorTree变换,合并不必要的ReduceSinkOperator,减少shuffle数据量
  5. 遍历OperatorTree,翻译为MapReduce任务
  6. 物理层优化器进行MapReduce任务的变换,生成最终的执行计划




原文链接:Hive是如何将hql语法转换成MR任务