欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

九章算法 | 爱彼迎面试题:序列重构

程序员文章站 2022-03-07 22:34:07
...

描述

判断是否序列 org 能唯一地由 seqs重构得出. org是一个由从1到n的正整数排列而成的序列,1≤n≤104。 重构表示组合成seqs的一个最短的父序列 (意思是,一个最短的序列使得所有 seqs里的序列都是它的子序列).

判断是否有且仅有一个能从 seqs重构出来的序列,并且这个序列是org。

在线评测地址

样例1

输入:org = [1,2,3], seqs = [[1,2],[1,3]]
输出: false
解释:
[1,2,3] 并不是唯一可以被重构出的序列,还可以重构出 [1,3,2]

样例2

输入: org = [1,2,3], seqs = [[1,2]]
输出: false
解释:
能重构出的序列只有 [1,2].

样例3

输入: org = [1,2,3], seqs = [[1,2],[1,3],[2,3]]
输出: true
解释:
序列 [1,2], [1,3], 和 [2,3] 可以唯一重构出 [1,2,3].

样例4

输入:org = [4,1,5,2,6,3], seqs = [[5,2,6,3],[4,1,5,2]]
输出:true

题解

九章算法班里讲过的拓扑排序,只要保证 queue 里最多同时只有一个元素即可。 所以这是 queue 用 list 然后每次 pop 也可以,反正只有一个数。

class Solution:
    """
    @param org: a permutation of the integers from 1 to n
    @param seqs: a list of sequences
    @return: true if it can be reconstructed only one or false
    """
    def sequenceReconstruction(self, org, seqs):
        graph = self.build_graph(seqs)
        topo_order = self.topological_sort(graph)
        return topo_order == org

    def build_graph(self, seqs):
        # initialize graph
        graph = {}
        for seq in seqs:
            for node in seq:
                if node not in graph:
                    graph[node] = set()

        for seq in seqs:
            for i in range(1, len(seq)):
                graph[seq[i - 1]].add(seq[i])

        return graph

    def get_indegrees(self, graph):
        indegrees = {
            node: 0
            for node in graph
        }

        for node in graph:
            for neighbor in graph[node]:
                indegrees[neighbor] += 1

        return indegrees

    def topological_sort(self, graph):
        indegrees = self.get_indegrees(graph)

        queue = []
        for node in graph:
            if indegrees[node] == 0:
                queue.append(node)

        topo_order = []
        while queue:
            if len(queue) > 1:
                # there must exist more than one topo orders
                return None

            node = queue.pop()
            topo_order.append(node)
            for neighbor in graph[node]:
                indegrees[neighbor] -= 1
                if indegrees[neighbor] == 0:
                    queue.append(neighbor)

        if len(topo_order) == len(graph):
            return topo_order

        return None

更多题解参考