tensorflow.python.framework.errors_impl.PermissionDeniedError: /datasets; Permission denied
程序员文章站
2022-05-14 21:21:47
...
tensorflow.python.framework.errors_impl.PermissionDeniedError: /datasets; Permission denied
学习tensorflow过程中TensorFlow Linear Function部分,在jupyter notebook上运行如下代码:
# Quiz Solution
import tensorflow as tf
def get_weights(n_features, n_labels):
"""
Return TensorFlow weights
:param n_features: Number of features
:param n_labels: Number of labels
:return: TensorFlow weights
"""
# TODO: Return weights
return tf.Variable(tf.truncated_normal((n_features, n_labels)))
def get_biases(n_labels):
"""
Return TensorFlow bias
:param n_labels: Number of labels
:return: TensorFlow bias
"""
# TODO: Return biases
return tf.Variable(tf.zeros(n_labels))
def linear(input, w, b):
"""
Return linear function in TensorFlow
:param input: TensorFlow input
:param w: TensorFlow weights
:param b: TensorFlow biases
:return: TensorFlow linear function
"""
# TODO: Linear Function (xW + b)
return tf.add(tf.matmul(input, w), b)
from tensorflow.examples.tutorials.mnist import input_data
def mnist_features_labels(n_labels):
"""
Gets the first <n> labels from the MNIST dataset
:param n_labels: Number of labels to use
:return: Tuple of feature list and label list
"""
mnist_features = []
mnist_labels = []
mnist = input_data.read_data_sets('/datasets/ud730/mnist', one_hot=True)
# In order to make quizzes run faster, we're only looking at 10000 images
for mnist_feature, mnist_label in zip(*mnist.train.next_batch(10000)):
# Add features and labels if it's for the first <n>th labels
if mnist_label[:n_labels].any():
mnist_features.append(mnist_feature)
mnist_labels.append(mnist_label[:n_labels])
return mnist_features, mnist_labels
# Number of features (28*28 image is 784 features)
n_features = 784
# Number of labels
n_labels = 3
# Features and Labels
features = tf.placeholder(tf.float32)
labels = tf.placeholder(tf.float32)
# Weights and Biases
w = get_weights(n_features, n_labels)
b = get_biases(n_labels)
# Linear Function xW + b
logits = linear(features, w, b)
# Training data
train_features, train_labels = mnist_features_labels(n_labels)
with tf.Session() as session:
session.run(tf.global_variables_initializer())
# Softmax
prediction = tf.nn.softmax(logits)
# Cross entropy
# This quantifies how far off the predictions were.
# You'll learn more about this in future lessons.
cross_entropy = -tf.reduce_sum(labels * tf.log(prediction), reduction_indices=1)
# Training loss
# You'll learn more about this in future lessons.
loss = tf.reduce_mean(cross_entropy)
# Rate at which the weights are changed
# You'll learn more about this in future lessons.
learning_rate = 0.08
# Gradient Descent
# This is the method used to train the model
# You'll learn more about this in future lessons.
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
# Run optimizer and get loss
_, l = session.run(
[optimizer, loss],
feed_dict={features: train_features, labels: train_labels})
# Print loss
print('Loss: {}'.format(l))
报错:
tensorflow.python.framework.errors_impl.PermissionDeniedError: /datasets; Permission denied
以为是自己对jupyter notebook 不熟悉环境配置有问题,在Pycharm上运行,也是如此,后来才知道,是里面 MNIST 数据集路径写的不对,把上面的
mnist = input_data.read_data_sets('/datasets/ud730/mnist', one_hot=True)
改成
mnist = input_data.read_data_sets('datasets/ud730/mnist', one_hot=True)
去掉前面的 “/ ”,就可以了。
参考:
https://github.com/slyrx/study_notes/blob/835acaab1d8ab16480b88530bd8d0c5d0bfd1448/Tech_Blog-scikit-learn/2018-9-28-tensorflow-MLP.md
推荐阅读
-
日志文件写入失败(permission denied)
-
CentOS7 SSH 密码正确,但仍提示“Permission denied”
-
yum 安装memcache permission denied(拒绝访问) 问题
-
Nginx应对Permission denied和File not found的配置
-
linux下VSFTP 530 Permission denied错误的解决办法
-
Nginx报403 forbidden错误 (13: Permission denied)的解决办法
-
Nginx中报错:Permission denied与Connection refused的解决
-
git@github.com: Permission denied (publickey). fatal: Could not read from remote repository.
-
Docker -v 对挂载的目录没有权限 Permission denied
-
Docker启动时提示Get Permission Denied while trying to connect解决方法