欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

哈希表在JAVA中如何实现

程序员文章站 2022-05-14 18:58:44
...
一、 复习一下基础知识
1. 截断低位与抹除高位 写道
如果一个数(二进制形式 n 位)对 2k 整除和取模:
● (1)整除是截断低位(k),保留高位(n-k);
● (2)取模运算是抹除最高比特位(要求 k = n-1);
不妨以 10(1010) 和 8(1000) 为例:
● (1)整除:10/8 == 1
● (2)取模:10%8 == 010 == 2
2. 移位运算 写道
在构建哈希表散列值时,常用移位、异或等操作。
1)左移运算符
左移运算符用“<<”表示,是将运算符左边的对象,向左移动运算符右边指定的位数,并且在低位补零。其实,向左移n 位,就 相当于乘上2 的n 次方。
例如:16 << 2 // 结果 64
2)无符号右移运算符
右移运算符用符号“>>>”表示,是将运算符左边的对象向右移动运算符右边指定的位数,并且在高位补0,其实右移n 位,就相当于除上2 的n 次方。
例如:16 >>>2 // 结果 4
3)右移运算符
带符号的右移运算符用符号“>>”表示,是将运算符左边的运算对象,向右移动运算符右边指定的位数。如果是正数,在高位补零,如果是负数,则在高位补1。
例如:16 >> 2 // 结果 4
-16 >> 2 // 结果 -4
  二、 哈希表
1、Hash定义 写道
哈希表通过记录关键字为自变量的函数(称为哈希函数)得到访记录的存储地址查找,所以在哈希表中进行查找操作时,须用同一哈希函数计算得到待查询记录的存储地址,然后到相应的存储单元去获得相关信息再判定查找是否成功。
根据设计哈希函数H(key)和处理冲突的方法,将一组关键字映射到一个有限连限的地址集(区间)上,并以关键字在地址集中的“像”为记录在表中的存储位置,这种表称为哈希表,这一映射过程为哈希造表或散列,所得的存储位置称为哈希地址或散列地址。
冲突定义:对于某个哈希函数H(K)和两个关键字K1和K2,如果K1<>K2,而H(K1)=H(K2),则称为冲突。具有相同哈希函数值的关键字对该哈希函数来说称为同义词。
一般情况,冲突只能尽可能减少而不能完全避免,因为哈希函数是从关键字集合到地址集合映像。通常关键集合比较大,它的元素包含所有可能的关键字,而地址集合的元素仅为哈希表中的地址值。
对于哈希表,主要考虑两个问题:一是如何构造哈希函数,二是如何解决冲突。
2、Hash构造方法 写道
Hash构造即为关键字与哈希地址映射关系建立。
构造哈希函数的原则是:①函数本身便于计算;②计算出来的地址分布均匀,即对任一关键字k,f(k) 对应不同地址的概率相等,目的是尽可能减少冲突。
哈希函数的构造方法很多,常用的有直接定址法、数字分析法、平方取中法、折叠法、除留余数法、随机数法等。
2.1 数字分析法 写道
如果事先知道关键字集合,并且每个关键字的位数比哈希表的地址码位数多时,可以从关键字中选出分布较均匀的若干位,构成哈希地址。例如,有80个记录,关键字为8位十进制整数d1d2d3…d7d8,如哈希表长取100,则哈希表的地址空间为:00~99。假设经过分析,各关键字中 d4和d7的取值分布较均匀,则哈希函数为:h(key)=h(d1d2d3…d7d8)=d4d7。例如,h(81346532)=43,h(81301367)=06。相反,假设经过分析,各关键字中 d1和d8的取值分布极不均匀, d1 都等于5,d8 都等于2,此时,如果哈希函数为:h(key)=h(d1d2d3…d7d8)=d1d8,则所有关键字的地址码都是52,显然不可取。
2.2 平方取中法 写道
当无法确定关键字中哪几位分布较均匀时,可以先求出关键字的平方值,然后按需要取平方值的中间几位作为哈希地址。这是因为:平方后中间几位和关键字中每一位都相关,故不同关键字会以较高的概率产生不同的哈希地址。
例:我们把英文字母在字母表中的位置序号作为该英文字母的内部编码。例如K的内部编码为11,E的内部编码为05,Y的内部编码为25,A的内部编码为01, B的内部编码为02。由此组成关键字“KEYA”的内部代码为11052501,同理我们可以得到关键字“KYAB”、“AKEY”、“BKEY”的内部编码。之后对关键字进行平方运算后,取出第7到第9位作为该关键字哈希地址,如图8.23所示。
关键字 内部编码 内部编码的平方值 H(k)关键字的哈希地址
KEYA 11050201 122157778355001 778
KYAB 11250102 126564795010404 795
AKEY 01110525 001233265775625 265
BKEY 02110525 004454315775625 315
2.3 除留余数法(Jdk HashMap实现) 写道
假设哈希表长为m,p为小于等于m的最大素数,则哈希函数为
h(k)=k % p ,其中%为模p取余运算。
例如,已知待散列元素为(18,75,60,43,54,90,46),表长m=10,p=7,则有
h(18)=18 % 7=4 h(75)=75 % 7=5 h(60)=60 % 7=4
h(43)=43 % 7=1 h(54)=54 % 7=5 h(90)=90 % 7=6
h(46)=46 % 7=4
此时冲突较多。为减少冲突,可取较大的m值和p值,如m=p=13,结果如下:
h(18)=18 % 13=5 h(75)=75 % 13=10 h(60)=60 % 13=8
h(43)=43 % 13=4 h(54)=54 % 13=2 h(90)=90 % 13=12
h(46)=46 % 13=7
此时没有冲突,如图8.25所示。
0 1 2 3 4 5 6 7 8 9 10 11 12
    54   43 18   46 60   75   90
    /**
     * Retrieve object hash code and applies a supplemental hash function to the
     * result hash, which defends against poor quality hash functions.  This is
     * critical because HashMap uses power-of-two length hash tables, that
     * otherwise encounter collisions for hashCodes that do not differ
     * in lower bits. Note: Null keys always map to hash 0, thus index 0.
     * 获取散列值
     */
    final int hash(Object k) {
        int h = hashSeed;
        if (0 != h && k instanceof String) {
            return sun.misc.Hashing.stringHash32((String) k);
        }
        h ^= k.hashCode();
        // This function ensures that hashCodes that differ only by
        // constant multiples at each bit position have a bounded
        // number of collisions (approximately 8 at default load factor).
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }

    /**
     * Returns index for hash code h.
     * 采用除留余数法,构建哈希表
     */
    static int indexFor(int h, int length) {
        // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
        return h & (length-1);
    }
2.4 与运算法(Jdk ThreadLocalMap实现) 写道
首先定义2的整次幂哈希表长度M,取出小于等于M的最大素数N(一般为N=M-1)
其次通过算法构建一个散列值V(Jdk定义为:0x61c88647)
最后执行与操作:
index = V & N 或
index = V & (M-1)
为什么使用“与”操作,目的是为了将散列值高位全部归零,只保留低位,用于做哈希表地址(即数组下标)。如以哈希表长度16为例,16-1=15,二进制为表示为:00000000 00000000 00001111,与某散列值做“与”操作如下,结果就是截取了最低的四位值。
00000000 00000000 00001111
& 10011100 00001101 00100101 (散列值)

00000000 00000000 00000101 //高全部归零,只留最低4位
/**
* Construct a new map initially containing (firstKey, firstValue).
* ThreadLocalMaps are constructed lazily, so we only create
* one when we have at least one entry to put in it.
*  采用“与”运算构建哈希表
*/
ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
    table = new Entry[INITIAL_CAPACITY];
    // firstKey.threadLocalHashCode哈希散列值
    // INITIAL_CAPACITY哈希表长度
    int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
    table[i] = new Entry(firstKey, firstValue);
    size = 1;
    setThreshold(INITIAL_CAPACITY);
}
2.5 分段叠加法 写道
这种方法是按哈希表地址位数将关键字分成位数相等的几部分(最后一部分可以较短),然后将这几部分相加,舍弃最高进位后的结果就是该关键字的哈希地址。具体方法有折叠法与移位法。移位法是将分割后的每部分低位对齐相加,折叠法是从一端向另一端沿分割界来回折叠(奇数段为正序,偶数段为倒序),然后将各段相加。例如:key=12360324711202065,哈希表长度为1000,则应把关键字分成3位一段,在此舍去最低的两位65,分别进行移位叠加和折叠叠加,求得哈希地址为105和907。
2.6 伪随机数法 写道
采用一个伪随机函数做哈希函数,即h(key)=random(key)。
在实际应用中,应根据具体情况,灵活采用不同的方法,并用实际数据测试它的性能,以便做出正确判定。通常应考虑以下五个因素 :
1) 计算哈希函数所需时间 (简单)。
2) 关键字的长度。
3) 哈希表大小。
4) 关键字分布情况。
5) 记录查找频率
三、 哈希表冲突处理方法
3.1 开放定址法 写道
这种方法也称再散列法,其基本思想是:当关键字key的哈希地址p=H(key)出现冲突时,以p为基础,产生另一个哈希地址p1,如果p1仍然冲突,再以p为基础,产生另一个哈希地址p2,…,直到找出一个不冲突的哈希地址pi ,将相应元素存入其中。这种方法有一个通用的再散列函数形式:
Hi=(H(key)+di)% m i=1,2,…,n
其中H(key)为哈希函数,m 为表长,di称为增量序列。增量序列的取值方式不同,相应的再散列方式也不同。主要有以下三种:
线性探测再散列
dii=1,2,3,…,m-1
这种方法的特点是:冲突发生时,顺序查看表中下一单元,直到找出一个空单元或查遍全表。
二次探测再散列
di=12,-12,22,-22,…,k2,-k2 ( k<=m/2 )
这种方法的特点是:冲突发生时,在表的左右进行跳跃式探测,比较灵活。
伪随机探测再散列
di=伪随机数序列。
具体实现时,应建立一个伪随机数发生器,(如i=(i+p) % m),并给定一个随机数做起点。
例如,已知哈希表长度m=11,哈希函数为:H(key)= key % 11,则H(47)=3,H(26)=4,H(60)=5,假设下一个关键字为69,则H(69)=3,与47冲突。如果用线性探测再散列处理冲突,下一个哈希地址为H1=(3 + 1)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 + 2)% 11 = 5,还是冲突,继续找下一个哈希地址为H3=(3 + 3)% 11 = 6,此时不再冲突,将69填入5号单元,参图8.26 (a)。如果用二次探测再散列处理冲突,下一个哈希地址为H1=(3 + 12)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 - 12)% 11 = 2,此时不再冲突,将69填入2号单元,参图8.26 (b)。如果用伪随机探测再散列处理冲突,且伪随机数序列为:2,5,9,……..,则下一个哈希地址为H1=(3 + 2)% 11 = 5,仍然冲突,再找下一个哈希地址为H2=(3 + 5)% 11 = 8,此时不再冲突,将69填入8号单元
/**
         * Set the value associated with key.
         *
         * @param key the thread local object
         * @param value the value to be set
         */
        private void set(ThreadLocal key, Object value) {

            // We don't use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.

            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];
		 e != null;
		 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal k = e.get();

                if (k == key) {
                    e.value = value;
                    return;
                }

                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }
3.2 链地址法(Jdk HashMap实现) 写道
这种方法的基本思想是将所有哈希地址为i的元素构成一个称为同义词链的单链表,并将单链表的头指针存在哈希表的第i个单元中,因而查找、插入和删除主要在同义词链中进行。链地址法适用于经常进行插入和删除的情况。
例如,已知一组关键字(32,40,36,53,16,46,71,27,42,24,49,64),哈希表长度为13,哈希函数为:H(key)= key % 13,则用链地址法处理冲突的结果如图8.27所示:

哈希表在JAVA中如何实现
            
    
    博客分类: Java java哈希表hashmapthreadlocal 
 
static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;
        V value;
        Entry<K,V> next;
        int hash;
        /**
         * Creates new entry.
         */
        Entry(int h, K k, V v, Entry<K,V> n) {
            value = v;
            next = n;
            key = k;
            hash = h;
        }
 /**
     * Adds a new entry with the specified key, value and hash code to
     * the specified bucket.  It is the responsibility of this
     * method to resize the table if appropriate.
     *
     * Subclass overrides this to alter the behavior of put method.
     */
    void addEntry(int hash, K key, V value, int bucketIndex) {
        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }

        createEntry(hash, key, value, bucketIndex);
    }
}
3.3 再哈希法 写道
这种方法是同时构造多个不同的哈希函数:
Hi=RH1(key) i=1,2,…,k
当哈希地址Hi=RH1(key)发生冲突时,再计算Hi=RH2(key)……,直到冲突不再产生。这种方法不易产生聚集,但增加了计算时间
3.4 公共溢出区 写道
这种方法的基本思想是:将哈希表分为基本表和溢出表两部分,凡是和基本表发生冲突的元素,一律填入溢出表
  • 哈希表在JAVA中如何实现
            
    
    博客分类: Java java哈希表hashmapthreadlocal 
  • 大小: 4.8 KB