欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

ThreadLocal

程序员文章站 2022-05-14 18:00:44
...
ThreadLocal


一、总结

1.版本 jdk 1.8.0_131 java SE
2.ThreadLocal
  • 应用场景:在不同的线程存储不同的上下文信息的场合中
  • 实现原理:ThreadLocal只是提供一个thread-local变量,这个变量于当前线程所独有, 每一个线程都有一个隶属与当前线程的thread-local变量

3.ThreadLocal.ThreadLocalMap
  • Thread类中持有ThreadLocalMap的对象引用
  • ThreadLocalMap 的数据结构是数组 Entry[]
  • 数组初始化大小 16,扩展 *2  ,扩展因子:length * 2 / 3
  • Entry 继承  WeakReference ,包含 key 与 value 两个属性
  • key:不是ThreadLocal本身,而是ThreadLocal的弱引用;value:存入ThreadLocal中的泛型T
  • ThreadLocalMap提供了一种为ThreadLocal定制的高效实现,并且自带一种基于弱引用的垃圾清理机制



二、源码及分析

/**
 * This class provides thread-local variables.  These variables differ from
 * their normal counterparts in that each thread that accesses one (via its
 * <tt>get</tt> or <tt>set</tt> method) has its own, independently initialized
 * copy of the variable.  <tt>ThreadLocal</tt> instances are typically private
 * static fields in classes that wish to associate state with a thread (e.g.,
 * a user ID or Transaction ID).
 *
 * <p>For example, the class below generates unique identifiers local to each
 * thread.
 * A thread's id is
 * assigned the first time it invokes <tt>UniqueThreadIdGenerator.getCurrentThreadId()</tt> and remains unchanged on subsequent calls.
 * <pre>
 * import java.util.concurrent.atomic.AtomicInteger;
 *
 * public class UniqueThreadIdGenerator {
 *
 *     private static final AtomicInteger uniqueId = new AtomicInteger(0);
 *
 *     private static final ThreadLocal &lt; Integer > uniqueNum = 
 *         new ThreadLocal &lt; Integer > () {
 *             &#64;Override protected Integer initialValue() {
 *                 return uniqueId.getAndIncrement();
 *         }
 *     };
 * 
 *     public static int getCurrentThreadId() {
 *         return uniqueId.get();
 *     }
 * } // UniqueThreadIdGenerator
 * </pre>
 * <p>Each thread holds an implicit reference to its copy of a thread-local
 * variable as long as the thread is alive and the <tt>ThreadLocal</tt>
 * instance is accessible; after a thread goes away, all of its copies of
 * thread-local instances are subject to garbage collection (unless other
 * references to these copies exist). 
 *
 * @author  Josh Bloch and Doug Lea
 * @version 1.42, 06/23/06
 * @since   1.2
 */
public class ThreadLocal<T> {



从类的注释中得知:
1.ThreadLocal 类提供了线程本地变量;与普通的变量不同,隶属于每个线程,每个线程可以独立初始化此变量的副本
2.在使用时通常定义为全局的变量 private static ThreadLocal<T> ,通常用来标识每个线程中某属性的一种状态
3.每个线程在首次调用时分配一个本地唯一的标识ID
4.在线程的生命周期内都会拥有一个对本地变量的引用;线程运行结束,所引用的变量会被GC回收

    /**
     * The difference between successively generated hash codes - turns
     * implicit sequential thread-local IDs into near-optimally spread
     * multiplicative hash values for power-of-two-sized tables.
     */
    private static final int HASH_INCREMENT = 0x61c88647; 


1.两个连续生成的 hash codes 的差值。为了让 hash code 能更好地分布在尺寸为 2 的 N 次方的数组里。

2.源码中使用此常量的调用位置

    // 在 ThreadLocal 内部的静态类 ThreadLocalMap 中 
    // 定位当前 hashCode 在数组中的下标时需计算当前线程的 hashCode 
    ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
        table = new Entry[INITIAL_CAPACITY];
        int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
        table[i] = new Entry(firstKey, firstValue);
        size = 1;
        setThreshold(INITIAL_CAPACITY);
    }

    // 计算当前线程的 hashCode 
    private final int threadLocalHashCode = nextHashCode();

    /**
     * The next hash code to be given out. Updated atomically. Starts at
     * zero.
     */
    // 原子性操作,线程安全,初始化值为0
    private static AtomicInteger nextHashCode = 
	new AtomicInteger();

    /**
     * The difference between successively generated hash codes - turns
     * implicit sequential thread-local IDs into near-optimally spread
     * multiplicative hash values for power-of-two-sized tables.
     */
    private static final int HASH_INCREMENT = 0x61c88647;

    /**
     * Returns the next hash code.
     */
    // 当前的hashCode值加上HASH_INCREMENT 
    private static int nextHashCode() {
	return nextHashCode.getAndAdd(HASH_INCREMENT); 
    }


1.计算数据在数组中的位置,
通常 index % size ,即通过当前数的数值与数组的大小取余
此处 index & (size - 1 )

原因:数组的 INITIAL_CAPACITY初始化大小为 16 ,即 大小为 2 ^ N 次幂,2 ^ N - 1 ,二进制中 N -1 位均为 1 ,即取 index 的低位中的 N-1 位

举例:3 % 16 = 3 <==>
0011 & 1111 = 0011 = 3

位运算比取模效率高很多。
因为对2^n取模,转为二进制,只要不是第n+1位,对结果的贡献显然都是0,会影响结果的只能是第n+1位。
2^1 ==> 0010 ;
2^2 ==> 0100 ;

举例:二进制取模运算的大致步骤
11010110110000(13744)%10011(19)=111(7)
将除数向右移位与被除数位数相同,若被除数大于除数,相减;直到被除数不大于除数;
将除数向右以为与被除数位数相同,若被除数小于除数,则向右少移动一位;重复上述步骤
(1)
11010110110000
10011000000000
--------------
00111110110000
(2)
111110110000
100110000000
------------
011000110000
(3)
11000110000
10011000000
-----------
00101110000
(4)
101110000
100110000
---------
001000000
(5)
1000000
0100110
-------
0011010
(6)
11010
10011
-----
00111
一般的二进制取余运算过程中需要进行移位运算、除数与被除数的大小判断等。

1011100(192)%10000(16)=1100(12)

(1)
1011100
1000000
-------
0011100
(2)
11100
10000
-----
01100
如果 a > 2^N 需要进行至少两次运算

总结:
对于a与2^N取余的运算,等于a&(2^N-1)

2.为何选用 0x61c88647 作为每次生成 hashCode 的间距

        // 目的:查看一串连续的数字存放在大小为16的数组中,是否均匀分布,是否会发生碰撞
	public static void main(String[] args) {
		method();
	}

	private static void method(){
		
		final int HASH_INCREMENT = 0x61c88647 ;
		for(int i = 0 ; i < 16 ; i++){
			int nextHash = i * HASH_INCREMENT + HASH_INCREMENT ;
			System.out.print(nextHash & (16 - 1));
			System.out.print(" ");
		}
	}
// 输出结果如下:
// 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9 0 


1.从输出结果看无重复数值出现:
以此值作为 Map 的KEY 可以减少存入时数据时出现的 HASH 碰撞。

2.
黄金比例: (Math.sqrt(5) - 1))
这个数的选取与斐波那契散列有关,0x61c88647对应的十进制为1640531527。斐波那契散列的乘数可以用(long) ((1L << 31) * (Math.sqrt(5) - 1))可以得到2654435769,如果把这个值给转为带符号的int,则会得到-1640531527。换句话说
(1L << 32) - (long) ((1L << 31) * (Math.sqrt(5) - 1))得到的结果就是1640531527也就是0x61c88647

3.AtomicInteger

    // 构造方法
    /**
     * Creates a thread local variable.
     */
    public ThreadLocal() {
    }


    // 初始化 threadLocal 变量的值
    /**
     * Returns the current thread's "initial value" for this
     * thread-local variable.  This method will be invoked the first
     * time a thread accesses the variable with the {@link #get}
     * method, unless the thread previously invoked the {@link #set}
     * method, in which case the <tt>initialValue</tt> method will not
     * be invoked for the thread.  Normally, this method is invoked at
     * most once per thread, but it may be invoked again in case of
     * subsequent invocations of {@link #remove} followed by {@link #get}.
     *
     * <p>This implementation simply returns <tt>null</tt>; if the
     * programmer desires thread-local variables to have an initial
     * value other than <tt>null</tt>, <tt>ThreadLocal</tt> must be
     * subclassed, and this method overridden.  Typically, an
     * anonymous inner class will be used.
     *
     * @return the initial value for this thread-local
     */
    protected T initialValue() {
        return null;
    }


从方法的注释中得出:
1.返回隶属于当前线程的 thread-local 变量的初始化的值
2.此方法会通过调用get方法来触发;除非在调用get前,调用了set赋值,则不会触发
3.通常每个线程只会执行一次此方法,但是当线程调用remove方法后再次调用get 方法时可能再次执行此方法
4.如果想将变量的初始化赋值为非NULL的值,则需要新增类来继承ThreadLocal,在子类中覆盖此方法来实现赋值;通常,可以通过建立匿名内部类的方式来实现此功能;


    /**
     * ThreadLocalMap is a customized hash map suitable only for
     * maintaining thread local values. No operations are exported
     * outside of the ThreadLocal class. The class is package private to
     * allow declaration of fields in class Thread.  To help deal with
     * very large and long-lived usages, the hash table entries use
     * WeakReferences for keys. However, since reference queues are not
     * used, stale entries are guaranteed to be removed only when
     * the table starts running out of space.
     */
    static class ThreadLocalMap {
    }


1.ThreadLocalMap 的作用仅仅是用来保存线程本地变量的值,是一个自适应的 hash map
2.ThreadLocalMap 的所有操作均不会对 ThreadLocal  之外的类提供
3.ThreadLocalMap 可以在Thread类中包装私有的属性
    // 在 Thread 类中含有ThreadLocalMap的声明的对象实例
    /* ThreadLocal values pertaining to this thread. This map is maintained
     * by the ThreadLocal class. */
    ThreadLocal.ThreadLocalMap threadLocals = null;

4.ThreadLocalMap 使用弱引用作为KEY,来解决很大且长时间存活的方法;然而,即使队列的引用已经不被使用了,过期的 entries 仅当table空间不够时才会被移除

        /**
         * The entries in this hash map extend WeakReference, using
         * its main ref field as the key (which is always a
         * ThreadLocal object).  Note that null keys (i.e. entry.get()
         * == null) mean that the key is no longer referenced, so the
         * entry can be expunged from table.  Such entries are referred to
         * as "stale entries" in the code that follows.
         */
        static class Entry extends WeakReference<ThreadLocal> {
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal k, Object v) {
                super(k);
                value = v;
            }
        }


1.ThreadLocalMap 中定义的静态内部类 Entry 继承 WeekReference
弱引用,使用ThreadLocal 的对象的引用作为 key
2.如果key为null说明此时的key不再被引用,此时这个Entry 可以被从表中删除


        /**
         * The initial capacity -- MUST be a power of two.
         */
        // ThreadLocalMap 中的 Entry[] 的初始化容量是16
        private static final int INITIAL_CAPACITY = 16;

        /**
         * The table, resized as necessary.
         * table.length MUST always be a power of two.
         */
        // 数组的长度必须是2的整数次幂
        private Entry[] table;

        /**
         * The number of entries in the table.
         */
        // Entry[] 中 Entry 的数量,而不是数组的长度
        private int size = 0;
 
        /**
         * The next size value at which to resize.
         */
        // 类似 HashMap 中的负载因子,达到此临界值即扩容,而不是达到数组的最大长度
        private int threshold; // Default to 0

        /**
         * Set the resize threshold to maintain at worst a 2/3 load factor.
         */
        // 扩容的临界值 len * 2 / 3 
        private void setThreshold(int len) {
            threshold = len * 2 / 3;
        }


        /**
         * Increment i modulo len.
         */
        private static int nextIndex(int i, int len) {
            return ((i + 1 < len) ? i + 1 : 0);
        }

        /**
         * Decrement i modulo len.
         */
        private static int prevIndex(int i, int len) {
            return ((i - 1 >= 0) ? i - 1 : len - 1);
        }



Entry[] 是一个环状的结构
1.求当前 i 的下一个位置
如果 i+1 小于 len ,返回 i+1
如果 i+1 等于 len ,返回 0,即
假设 len = 16 ,数组中的位置依次是0~15,当前i=15,15+1=16=len,即回到了环的起始位置,那15的下一个位置就是0

2.求当前 i 的上一个位置
如果 i-1 大于等于 0 ,返回 i - 1
如果 i-1 小于 0 ,返回 len - 1,即
假设 len = 16 ,数组中的位置依次是0~15,当前i=0,0-11<0<len,即回到了环的结尾位置上,结尾的位置就是len-1,=16-1=15

        /**
         * Construct a new map initially containing (firstKey, firstValue).
         * ThreadLocalMaps are constructed lazily, so we only create
         * one when we have at least one entry to put in it.
         */
        ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
            // 实例化数组,初始化大小16
            table = new Entry[INITIAL_CAPACITY];
            // 获取当前ThreadLocal 的 hashCode 并与 2^N -1 做与操作
            // 目的:计算在数组中的存放位置,等价于 hashcode % length 
            // 但运算效率 & 操作要优于 %
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            // 构造匿名Entry 并放入数组得下标为i的位置上
            table[i] = new Entry(firstKey, firstValue);
            // 初始化数组中entry 的数量为 1
            size = 1;
            // 扩容的临界值值为 16*2/3 = 10 
            setThreshold(INITIAL_CAPACITY);
        }


1.初始化构造一个新的 ThreadLocalMap 包含第一组Entry<key,value>
2.ThreadLocalMap 懒加载构造器,只有当有至少一个entry需要存放的时候才会去构造

        /**
         * Construct a new map including all Inheritable ThreadLocals
         * from given parent map. Called only by createInheritedMap.
         *
         * @param parentMap the map associated with parent thread.
         */
        private ThreadLocalMap(ThreadLocalMap parentMap) {
            // 获取给定的parentMap中的数组
            Entry[] parentTable = parentMap.table;
            // 获取数组的容量
            int len = parentTable.length;
            // 设置扩容的临界值
            setThreshold(len);
            // 创建新的数组
            table = new Entry[len];
            // 遍历原有数组,将数据放入新的数组中
            for (int j = 0; j < len; j++) {
                Entry e = parentTable[j];
                if (e != null) {
                    ThreadLocal key = e.get();
                    if (key != null) {
                        // 此处获取的是子类中定义的value
                        Object value = key.childValue(e.value);
                        Entry c = new Entry(key, value);
                        int h = key.threadLocalHashCode & (len - 1);
                        // 寻址,若当前位置不为空,则继续寻找相邻位置是否有元素
                        while (table[h] != null)
                            h = nextIndex(h, len);
                        table[h] = c;
                        size++;
                    }
                }
            }
        }



1.创建一个包含所有所有从给定的 parentMap 中继承的 TreadLocal 的新的Map
2.仅仅当需要创建继承关系的Map时调用


        /**
         * Get the entry associated with key.  This method
         * itself handles only the fast path: a direct hit of existing
         * key. It otherwise relays to getEntryAfterMiss.  This is
         * designed to maximize performance for direct hits, in part
         * by making this method readily inlinable.
         *
         * @param  key the thread local object
         * @return the entry associated with key, or null if no such
         */
        private Entry getEntry(ThreadLocal key) {
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
            if (e != null && e.get() == key)
                return e;
            else
                return getEntryAfterMiss(key, i, e);
        }



1.通过 key 检索绑定的 Entry
2.方法本身值处理快速路径匹配,即直接命中匹配的key
3.否则会关联到 getEntryAfterMiss 方法上,这样设计的目的加大直接命中key 的可能,在某种程度上此方法为一个快速的内联方法
-- 解释:数据尽可能均匀的分布到大小为 2^N 的数组中,但如果出现 hash 碰撞,即 i = hash & (2^N -1) 处已经有值了,那么继续向下寻址,判断当前是否有值,若有,继续向下查询,直到此时i的数据为null,将新增的数据放到 i 的位置上
-- 查询时同样,如果 i 位置就是所需要的KEY,那么直接返回,如果不是,从 i 位置向后检索

        /**
         * Version of getEntry method for use when key is not found in
         * its direct hash slot.
         *
         * @param  key the thread local object
         * @param  i the table index for key's hash code
         * @param  e the entry at table[i]
         * @return the entry associated with key, or null if no such
         */
        private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) {
                // e 非空,获取 Entry 的对应的 KEY
                // 此处再次判断 当前的 k 是否与查询的 k 相等
                // 目的是,当 i 不断后移时,用每次从 i 位置上取到的值与 k 比较
                // 而不是重复判断 
                ThreadLocal k = e.get();
                if (k == key)
                    return e;
                if (k == null)
                    // 如果 k == null 在删除 
                    expungeStaleEntry(i);
                else
                    // i 想后移动一位
                    i = nextIndex(i, len);
                e = tab[i];
            }
            return null;
        }



1.此方法的设计目的是在 getEntry 时,如果未能在 hash 区域内直接命中 key 时的补充
2.从  i 位置开始,向后移动,获取每处 i 对应的值,如果值不为空,那么进行比较,如果为空,那么清除

        /**
         * Expunge a stale entry by rehashing any possibly colliding entries
         * lying between staleSlot and the next null slot.  This also expunges
         * any other stale entries encountered before the trailing null.  See
         * Knuth, Section 6.4
         *
         * @param staleSlot index of slot known to have null key
         * @return the index of the next null slot after staleSlot
         * (all between staleSlot and this slot will have been checked
         * for expunging).
         */
        private int expungeStaleEntry(int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;
            // 删除 entry[] 数组中 staleSlot 位置的元素
            // expunge entry at staleSlot
            tab[staleSlot].value = null;   
            tab[staleSlot] = null;
            size--;

            // Rehash until we encounter null
            Entry e;
            int i;
            // 遍历 i 之后的位置的元素
            for (i = nextIndex(staleSlot, len);
		 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal k = e.get();
                // 如果 k 为 null,则设置数组 i 位置为 null
                if (k == null) {
                    e.value = null;
                    tab[i] = null;
                    size--;
                } else {
                    // 重新计算 当前 key 的 hash值,通过新的 hash 值,计算在数组中的存放位置
                    int h = k.threadLocalHashCode & (len - 1);
                    // 如果位置一样,说明,此时 key 就应该放在 i 处
                    // 如果位置不一样,说明当存放 key 时,发生了 hash 碰撞
                    // 导致  key 不能存放到制定的 h 位置上
                    // 将 i 位置设置为 null 
                    // 判断 h 处是否有数据,无则放入 h 位置
                    // 有则从 h 位置向后寻址
                    if (h != i) {
                        tab[i] = null;

                        // Unlike Knuth 6.4 Algorithm R, we must scan until
                        // null because multiple entries could have been stale.
                        while (tab[h] != null)
                            h = nextIndex(h, len);
                        tab[h] = e;
                    }
                }
            }
            return i;
        }



1.通过再次hash可能存在碰撞可能的 entry 数组 ,删除位于 staleSlot 与下一个可能为NULL的元素之间的所有
2.删除在遇到 null 元素之前的已经不再使用的引用

        /**
         * Set the value associated with key.
         *
         * @param key the thread local object
         * @param value the value to be set
         */
        private void set(ThreadLocal key, Object value) {

            // We don't use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.

            // 此处和get()方法一样不使用快速路径
            // 因为快速路径至少共同的去调用调用set去创建 entry 同时去替换存在的对象,在这种情况下,更容易出现错误 ?????????
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];
		 e != null;
		 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal k = e.get();
                // 如果找到了匹配的key,则直接将value替换为最新的
                if (k == key) {
                    e.value = value;
                    return;
                }
                // 如果 key 为 null 
                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }


1.存入关联的 key 与 value

        /**
         * Replace a stale entry encountered during a set operation
         * with an entry for the specified key.  The value passed in
         * the value parameter is stored in the entry, whether or not
         * an entry already exists for the specified key.
         *
         * As a side effect, this method expunges all stale entries in the
         * "run" containing the stale entry.  (A run is a sequence of entries
         * between two null slots.)
         *
         * @param  key the key
         * @param  value the value to be associated with key
         * @param  staleSlot index of the first stale entry encountered while
         *         searching for key.
         */
        private void replaceStaleEntry(ThreadLocal key, Object value,
                                       int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;
            Entry e;

            // Back up to check for prior stale entry in current run.
            // We clean out whole runs at a time to avoid continual
            // incremental rehashing due to garbage collector freeing
            // up refs in bunches (i.e., whenever the collector runs).
            int slotToExpunge = staleSlot;
            for (int i = prevIndex(staleSlot, len);
		 (e = tab[i]) != null;
                 i = prevIndex(i, len))
                if (e.get() == null)
                    slotToExpunge = i;

            // Find either the key or trailing null slot of run, whichever
            // occurs first
            for (int i = nextIndex(staleSlot, len);
		 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal k = e.get();

                // If we find key, then we need to swap it
                // with the stale entry to maintain hash table order.
                // The newly stale slot, or any other stale slot
                // encountered above it, can then be sent to expungeStaleEntry
                // to remove or rehash all of the other entries in run.
                if (k == key) {
                    e.value = value;

                    tab[i] = tab[staleSlot];
                    tab[staleSlot] = e;

                    // Start expunge at preceding stale entry if it exists
                    if (slotToExpunge == staleSlot)
                        slotToExpunge = i;
                    cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
                    return;
                }

                // If we didn't find stale entry on backward scan, the
                // first stale entry seen while scanning for key is the
                // first still present in the run.
                if (k == null && slotToExpunge == staleSlot)
                    slotToExpunge = i;
            }

            // If key not found, put new entry in stale slot
            tab[staleSlot].value = null;   
            tab[staleSlot] = new Entry(key, value);

            // If there are any other stale entries in run, expunge them
            if (slotToExpunge != staleSlot)
                cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
        }


1.通过一个特殊的key值在一系列的操作中替换掉一个已经过时的引用
2.无论这个特殊的key值是否在Map中存在,传入的value都会存入到 Entry 中
3.此方法将会删除两个null值之间所有的无效的引用

博文参考:
ThreadLocal 和神奇的 0x61c88647
ThreadLocal源码解读
相关标签: ThreadLocal