欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Handler源码分析

程序员文章站 2022-05-14 15:26:15
...

转载请注明来源 https://blog.csdn.net/u011453163/article/details/80162281

Handler的基本使用

一般情况下 我们都是在主线程初始化Handler的,主要是用Handler来处理UI相关的操作。

 mHandler=new Handler(){
            @Override
            public void handleMessage(Message msg) {
                super.handleMessage(msg);
            }
        };

然后在需要操作的时候

  mHandler.sendMessage(msg);

如果是在工作线程中初始化Handler 以上的方法就行不通了

  new Thread(){
            @Override
            public void run() {
                super.run();
                mThreadHandler=new Handler(){
                    @Override
                    public void handleMessage(Message msg) {
                        super.handleMessage(msg);
                    }
                };
            }
        }.start();

初始化的时候直接就报错了

 java.lang.RuntimeException: Can't create handler inside thread that has not called Looper.prepare()

这是因为在Handler需要和Looper一起才能正常工作

new Thread(){
            @Override
            public void run() {
                super.run();
                Looper.prepare();
                mThreadHandler=new Handler(){
                    @Override
                    public void handleMessage(Message msg) {
                        super.handleMessage(msg);
                    }
                };
                Looper.loop();
            }
        }.start();

加上 Looper就能正常使用了

Looper.prepare();
Looper.loop();

为什么在主线程初始化Handler的时候不需要构建Looper呢?
因为主线程的Looper在ActivityThread 的main 方法就已经初始化了。

Handler源码分析

  • 从构建一个handler对象开始
 public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

以上代码可以直接看出 handler和looper的关系非常密切,hanlder的创建必须存在looper。这也是为什么在工作线程直接构建hanlder会崩溃的原因。

  • Looper从何而来
mLooper = Looper.myLooper();
 public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }
 static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
 private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

以上是Looper类里 关于looper如何构建和获取的源码。Looper本身是个单例类,所以数据可以全局共享。
大概逻辑是这样的
Looper的prepare构建并把looper存储在ThreadLocal里。这里创建的looper因为是在Looper类内部创建的所以都是互不关联的独立对象。ThreadLocal是个存储的集合(其实是数组),然后在使用到looper的时候通过sThreadLocal.get();获取对应的looper。

  • 现在Looper 有了,满足了Handler的构建条件。该发送message了
public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }
 public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }
 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

发送Message的最终结果是执行了

queue.enqueueMessage(msg, uptimeMillis);
  • MessageQueue队列出场
queue.enqueueMessage(msg, uptimeMillis);
  boolean enqueueMessage(Message msg, long when) {
      .....
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }
    .....
        return true;
    }

MessageQueue的enqueueMessage方法将message加到链表中,Message是一个链表块。所以Handler发送消息实际上就是将消息加到链表中。

  • 消息有入链也就有出链 Looper.loop();
public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
                msg.target.dispatchMessage(msg);
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
           ......
        }
    }

这是loop方法的关键方法,方法的逻辑是起一个无限循环从MessageQueue中取出message

try {
                msg.target.dispatchMessage(msg);
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }

这里的msg.target就是handler对象,而dispatchMessage最终也是调用了handleMessage方法

 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

target实在handler发送message message加入链表的时候赋值,就是发送者本身。

 public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

到这里 handler从构建 到发送message(sendMessage) 到 处理message(handleMessage)整个过程就打通了。

  • 线程切换的核心ThreadLocal 和 ThreadLocalMap

ThreadLocalMap是ThreadLocal 的一个静态内部类。ThreadLocalMap的存储容器是数组,而且自己有一套扩容机制。ThreadLocal的大致作用是给Thread里的ThreadLocalMap容器添加对象,操作的都是Thread里的ThreadLocalMap容器。

使用代码

 public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }

 public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }

Handler之所以能切换线程 是因为Looper在构建的时候就绑定到了构建是所在的线程中了。

Looper.prepare();

private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

Looper.loop();

  public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        ......
  }

public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }       

所以Looper一直运行在它被构建时的线程中,并且Looper时持有MessageQueue的,所其他的线程发送的message会存储到Looper的MessageQueue中,并且在Looper所在的线程中得到执行,达到线程切换的效果。

总结

hanlder机制示例图大概是这样的
Handler源码分析

Handler机制几个相关类之间的关系

Message(消息体)
(一个链表块)
持有handler 对象 用于调用handleMessage

MessageQueue(消息队列)
存储消息方式:链表
持有Message
作用 消息的入链 和 出链

Looper (搬运消息的)
持有MessageQueue
无限循环 取消息并且调用handler的 dispatchMessage->handleMessage方法

Handler
发送Message (sendMessage)
处理Message (handleMessage)

以上是我对handler的一些理解 有什么不对的欢迎指点。