欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

kafka producer的batch.size和linger.ms

程序员文章站 2022-03-07 20:24:55
...

 

1.问题

batch.size和linger.ms是对kafka producer性能影响比较大的两个参数。batch.size是producer批量发送的基本单位,默认是16384Bytes,即16kB;lingger.ms是sender线程在检查batch是否ready时候,判断有没有过期的参数,默认大小是0ms。

那么producer是按照batch.size大小批量发送消息呢,还是按照linger.ms的时间间隔批量发送消息呢?这里先说结论:其实满足batch.size和ling.ms之一,producer便开始发送消息。

 

2.源码分析

首先sender线程主要代码如下,我们主要关心sender线程阻塞的情况:

 

void run(long now) {
        Cluster cluster = metadata.fetch();

        // result.nextReadyCheckDelayMs表示下次检查是否ready的时间,也是//selecotr会阻塞的时间
        RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);

        if (result.unknownLeadersExist)
            this.metadata.requestUpdate();

        Iterator<Node> iter = result.readyNodes.iterator();

        long notReadyTimeout = Long.MAX_VALUE;
        while (iter.hasNext()) {
            Node node = iter.next();
            if (!this.client.ready(node, now)) {
                iter.remove();
                notReadyTimeout = Math.min(notReadyTimeout, this.client.connectionDelay(node, now));
            }
        }

        Map<Integer, List<RecordBatch>> batches = this.accumulator.drain(cluster,
                                                                         result.readyNodes,
                                                                         this.maxRequestSize,
                                                                         now);
        if (guaranteeMessageOrder) {
            for (List<RecordBatch> batchList : batches.values()) {
                for (RecordBatch batch : batchList)
                    this.accumulator.mutePartition(batch.topicPartition);
            }
        }

        List<RecordBatch> expiredBatches = this.accumulator.abortExpiredBatches(this.requestTimeout, now);
    
        for (RecordBatch expiredBatch : expiredBatches)
            this.sensors.recordErrors(expiredBatch.topicPartition.topic(), expiredBatch.recordCount);

        sensors.updateProduceRequestMetrics(batches);
        List<ClientRequest> requests = createProduceRequests(batches, now);

        // 暂且只关心result.nextReadyCheckDelayMs
        long pollTimeout = Math.min(result.nextReadyCheckDelayMs, notReadyTimeout);
        if (result.readyNodes.size() > 0) {
            log.trace("Nodes with data ready to send: {}", result.readyNodes);
            log.trace("Created {} produce requests: {}", requests.size(), requests);
            pollTimeout = 0;
        }
        for (ClientRequest request : requests)
            client.send(request, now);

        // poll最终会调用selector,pollTimeout也就是selector阻塞的时间
        this.client.poll(pollTimeout, now);
    }

 

selector

private int select(long ms) throws IOException {
        if (ms < 0L)
            throw new IllegalArgumentException("timeout should be >= 0");
        if (ms == 0L)
            return this.nioSelector.selectNow();
        else
            return this.nioSelector.select(ms);
    }

 

我们可以从实例化一个新的KafkaProducer开始分析(还没有调用send方法),在sender线程调用accumulator#ready(..)时候,会返回result,其中包含selector可能要阻塞的时间。由于还没有调用send方法,所以Deque<RecordBatch>为空,所以result中包含的nextReadyCheckDelayMs也是最大值,这个时候selector会一直阻塞。

 

public ReadyCheckResult ready(Cluster cluster, long nowMs) {
        Set<Node> readyNodes = new HashSet<Node>();
         // 初始化为最大值
        long nextReadyCheckDelayMs = Long.MAX_VALUE;
        boolean unknownLeadersExist = false;

        boolean exhausted = this.free.queued() > 0;
        for (Map.Entry<TopicPartition, Deque<RecordBatch>> entry : this.batches.entrySet()) {
            TopicPartition part = entry.getKey();
            Deque<RecordBatch> deque = entry.getValue();

            Node leader = cluster.leaderFor(part);
            if (leader == null) {
                unknownLeadersExist = true;
            } else if (!readyNodes.contains(leader) && !muted.contains(part)) {
                synchronized (deque) {
                    RecordBatch batch = deque.peekFirst();
                    if (batch != null) {
                        boolean backingOff = batch.attempts > 0 && batch.lastAttemptMs + retryBackoffMs > nowMs;
                        long waitedTimeMs = nowMs - batch.lastAttemptMs;
                        long timeToWaitMs = backingOff ? retryBackoffMs : lingerMs;

                        // 和linger.ms有关
                        long timeLeftMs = Math.max(timeToWaitMs - waitedTimeMs, 0);
                        boolean full = deque.size() > 1 || batch.records.isFull();
                        boolean expired = waitedTimeMs >= timeToWaitMs;
                        boolean sendable = full || expired || exhausted || closed || flushInProgress();
                        if (sendable && !backingOff) {
                            readyNodes.add(leader);
                        } else {
                            nextReadyCheckDelayMs = Math.min(timeLeftMs, nextReadyCheckDelayMs);
                        }
                    }
                }
            }
        }

        return new ReadyCheckResult(readyNodes, nextReadyCheckDelayMs, unknownLeadersExist);
    }

 

然后我们调用send方法往内存中放入了一条数据,由于是新建的一个RecordBatch,所以会唤醒sender线程
KafkaProducer#doSend(...)

if (result.batchIsFull || result.newBatchCreated) {
                log.trace("Waking up the sender since topic {} partition {} is either full or getting a new batch", record.topic(), partition);
                this.sender.wakeup();
            }

 

 

这个时候会唤醒阻塞在selector#select(..)的sender线程,sender线程又运行到accumulator#ready(..),由于Deque<RecordBatch>有值,所以返回的result包含的nextReadyCheckDelayMs不再是最大值,而是和linger.ms有关的值。也就是时候selector会z最多阻塞lingger.ms后就返回,然后再次轮询。

也就是说当Deque<RecordBatch>不为空的时候,sender线程会最多阻塞linger.ms时间;Deque<RecordBatch>为空的时候,sender线程会阻塞Long.MAX_VALUE时间;一旦调用了KafkaProduer#send(..)将消息放到内存中,新建了个RecordBatch,则会将sender线wakeup。

另外从上面的代码,即KafkaProducer#doSend(...)中也可以看到,如果有一个RecordBatch满了,也会调用Sender#wakeup(..),所以综上所述:只要满足linger.ms和batch.size满了就会激活sender线程来发送消息。

 

 rel:https://www.cnblogs.com/set-cookie/p/8902340.html

 

相关标签: kafka 调优