欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Pytorch使用shuffle打乱数据的操作

程序员文章站 2022-03-07 17:58:07
这个东西算是我被这个shuffle坑了的一个总结吧!首先我得告诉你一件事,那就是pytorch中的tensor,如果直接使用random.shuffle打乱数据,或者使用下面的方式,自己定义直接写。...

这个东西算是我被这个shuffle坑了的一个总结吧!

首先我得告诉你一件事,那就是pytorch中的tensor,如果直接使用random.shuffle打乱数据,或者使用下面的方式,自己定义直接写。

 def shuffle(self, x, y,random=none, int=int):
         if random is none:
            random = self.random
                 for i in range(len(x)):
            j = int(random() * (i + 1))
            if j<=len(x)-1:
                x[i],x[j]=x[j],x[i]
                y[i],y[j]=y[j],y[i]
          retrun x,y

那你就会收获一堆的混乱数据,因为使用这种交换的方式对tensor类型的数据进行操作,会导致里面的数据出现重复复制的问题。

比如我y中的数据为【0,1,0,1,0,1】

在经过几次shuffle,其中的数据就变成了【1,1,1,1,1,1】。

数据顿时出现混乱。

正确的方式是先转成numpy,再进行交换数据

比如:

 def shuffle(self, x, y,random=none, int=int):
        """x, random=random.random -> shuffle list x in place; return none.
        optional arg random is a 0-argument function returning a random
        float in [0.0, 1.0); by default, the standard random.random.
        """
        if random is none:
            random = self.random #random=random.random
        #转成numpy
        if torch.is_tensor(x)==true:
            if self.use_cuda==true:
               x=x.cpu().numpy()
            else:
               x=x.numpy()
        if torch.is_tensor(y) == true:
            if self.use_cuda==true:
               y=y.cpu().numpy()
            else:
               y=y.numpy()
        #开始随机置换
        for i in range(len(x)):
            j = int(random() * (i + 1))
            if j<=len(x)-1:#交换
                x[i],x[j]=x[j],x[i]
                y[i],y[j]=y[j],y[i]
        #转回tensor
        if self.use_cuda == true:
            x=torch.from_numpy(x).cuda()
            y=torch.from_numpy(y).cuda()
        else:
            x = torch.from_numpy(x)
            y = torch.from_numpy(y)
        return x,y

补充:python对训练数据集shuffle(打乱)的一些方式

1.通过数组来shuffle

image_list=[]           # list of images
label_list=[]           # list of labels
 
temp = np.array([image_list, label_list])
temp = temp.transpose()
np.random.shuffle(temp)
 
images = temp[:, 0]     # array of images   (n,)
labels = temp[:, 1]

2.通过索引 index 来 shuffle

image_list=[]           # list of images
label_list=[]           # list of labels
 
##如果image_list存的是读取的特征数据,而不是图片路径,不要注释后面两句(list无法索引内部list)
#[list indices must be integers or slices, not list]
#image_list = np.array(image_list)
#label_list = np.array(label_list)
 
index = [i for i in range(len(image_list))]
np.random.shuffle(index)
images = image_list[index]
labels = label_list[index]

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。