欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

鱼眼镜头校准

程序员文章站 2022-03-07 12:53:06
...

01.简介
当我们使用的鱼眼镜头视角大于160°时,OpenCV中用于校准镜头“经典”方法的效果可能就不是和理想了。即使我们仔细遵循OpenCV文档中的步骤,也可能会得到下面这个奇奇怪怪的照片:
鱼眼镜头校准
从3.0版开始,OpenCV包含了cv2.fisheye可以很好地处理鱼眼镜头校准的软件包。但是,该模块没有针对读者的相关的教程。

02.相机参数获取
校准镜头其实只需要下面2个步骤。

  1. 利用OpenCV计算镜头的2个固有参数。OpenCV称它们为K和D,我们只需要知道它们是numpy数组外即可。
  2. 通过K和D对图像进行去畸变矫正。

计算K和D

  1. 下载棋盘格图案并将其打印在纸上(字母或A4尺寸)。大家要尽量将这张纸粘在坚硬且平坦的物体表面,例如一块硬纸板上。因为这里的关键是直线必须是直线
  2. 将图案放在相机前面拍摄一些图像,图案要取在不同的位置和角度。这里的关键是图案需要以不同的方式出现失真(以便OpenCV尽可能多地了解镜头相关参数)。
    鱼眼镜头校准
  3. 我们先将这些图片保存在JPG文件夹中。
  4. 现在我们只需要将此Python脚本片段复制到calibrate.py先前保存这些图像的文件夹中的文件中,就可以对其进行命名。
import cv2
assert cv2.__version__[0] == '3', 'The fisheye module requires opencv version >= 3.0.0'
import numpy as np
import os
import glob
CHECKERBOARD = (6,9)
subpix_criteria = (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1)
calibration_flags = cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC+cv2.fisheye.CALIB_CHECK_COND+cv2.fisheye.CALIB_FIX_SKEW
objp = np.zeros((1, CHECKERBOARD[0]*CHECKERBOARD[1], 3), np.float32)
objp[0,:,:2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2)
_img_shape = None
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
images = glob.glob('*.jpg')
for fname in images:
    img = cv2.imread(fname)
    if _img_shape == None:
        _img_shape = img.shape[:2]
    else:
        assert _img_shape == img.shape[:2], "All images must share the same size."
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    # Find the chess board corners
    ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD, cv2.CALIB_CB_ADAPTIVE_THRESH+cv2.CALIB_CB_FAST_CHECK+cv2.CALIB_CB_NORMALIZE_IMAGE)
    # If found, add object points, image points (after refining them)
    if ret == True:
        objpoints.append(objp)
        cv2.cornerSubPix(gray,corners,(3,3),(-1,-1),subpix_criteria)
        imgpoints.append(corners)
N_OK = len(objpoints)
K = np.zeros((3, 3))
D = np.zeros((4, 1))
rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
rms, _, _, _, _ = \
    cv2.fisheye.calibrate(
        objpoints,
        imgpoints,
        gray.shape[::-1],
        K,
        D,
        rvecs,
        tvecs,
        calibration_flags,
        (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6)
    )
print("Found " + str(N_OK) + " valid images for calibration")
print("DIM=" + str(_img_shape[::-1]))
print("K=np.array(" + str(K.tolist()) + ")")
print("D=np.array(" + str(D.tolist()) + ")")

运行python calibrate.py。如果一切顺利,脚本将输出如下内容:

Found 36 images for calibration
DIM=(1600, 1200)
K=np.array([[781.3524863867165, 0.0, 794.7118000552183], [0.0, 779.5071163774452, 561.3314451453386], [0.0, 0.0, 1.0]])
D=np.array([[-0.042595202508066574], [0.031307765215775184], [-0.04104704724832258], [0.015343014605793324]])

03.图像畸变矫正
获得K和D后,我们可以对以下情况获得的图像进行失真矫正:我们需要取消失真的图像与校准期间捕获的图像具有相同的尺寸。也可以将边缘周围的某些区域裁剪掉,来保证使未失真图像的整洁。通过undistort.py使用以下python代码创建文件:

# You should replace these 3 lines with the output in calibration step
DIM=XXX
K=np.array(YYY)
D=np.array(ZZZ)
def undistort(img_path):
    img = cv2.imread(img_path)
    h,w = img.shape[:2]
    map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, D, np.eye(3), K, DIM, cv2.CV_16SC2)
    undistorted_img = cv2.remap(img, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)
    cv2.imshow("undistorted", undistorted_img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
if __name__ == '__main__':
    for p in sys.argv[1:]:
        undistort(p)

现在运行python undistort.py file_to_undistort.jpg。
鱼眼镜头校准
鱼眼镜头校准
如果大家仔细观察,可能会注意到一个问题:原始图像中的大部分会在此过程中被裁剪掉。例如,图像左侧的橙色RC汽车只有一半的车轮保持在未变形的图像中。实际上,原始图像中约有30%的像素丢失了。

我们需要首先了解什么是“平衡”(在经典cv2模块中也称为“ alpha” ),以及它如何影响未失真图像的尺寸和形状。先来看一个比较极端的图像矫正的例子。
鱼眼镜头校准鱼眼镜头校准
注意:如您所知,OpenCVfisheye模块通过将角拉伸得过大而过度补偿了角。但这对于大多数图像来说效果都是挺好的。

这里涉及3个不同的维度:

  1. dim1。原始图像的尺寸。
  2. dim2。这是在使图像不失真之后要保留的尺寸。dim2很难理解,因为它受的影响balance,它基本上告诉OpenCV要保留多少图像。当时balance= 0,OpenCV将保留图像的最佳部分。而balance = 1,OpenCV保留原始图像的每个像素,这意味着很多黑色填充区域和过度拉伸的角。dim2其长宽比必须与相同dim1。
  3. dim3。OpenCV将放置未失真图像的最终包装盒的尺寸。它可以是任何大小和任何纵横比。但是大多数情况下,除非想对未失真的图像进行裁剪,否则我们希望使其与原图像相同。

希望下面的程序比正式的OpenCV文档更容易理解。将dim2,dim3和balance(dim1可以从输入图像派生)传递到undistort下面的方法。

# You should replace these 3 lines with the output in calibration step
DIM=XXX
K=np.array(YYY)
D=np.array(ZZZ)
def undistort(img_path, balance=0.0, dim2=None, dim3=None):
    img = cv2.imread(img_path)
    dim1 = img.shape[:2][::-1]  #dim1 is the dimension of input image to un-distort
    assert dim1[0]/dim1[1] == DIM[0]/DIM[1], "Image to undistort needs to have same aspect ratio as the ones used in calibration"
    if not dim2:
        dim2 = dim1
    if not dim3:
        dim3 = dim1
    scaled_K = K * dim1[0] / DIM[0]  # The values of K is to scale with image dimension.
    scaled_K[2][2] = 1.0  # Except that K[2][2] is always 1.0
    # This is how scaled_K, dim2 and balance are used to determine the final K used to un-distort image. OpenCV document failed to make this clear!
    new_K = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify(scaled_K, D, dim2, np.eye(3), balance=balance)
    map1, map2 = cv2.fisheye.initUndistortRectifyMap(scaled_K, D, np.eye(3), new_K, dim3, cv2.CV_16SC2)
    undistorted_img = cv2.remap(img, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)
    cv2.imshow("undistorted", undistorted_img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
if __name__ == '__main__':
    for p in sys.argv[1:]:
        undistort(p)

当然,大家应该尝试不同的值,以了解它们如何改变最终图像,达到一个平衡状态!

相关标签: 传感器融合