欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

python实现参数估计

程序员文章站 2022-05-09 10:53:24
...

1.导入数据

import numpy as np
import pandas as pd
from scipy import stats
path = 'D:\数据\data.xlsx'
data = pd.read_excel(path)
age = data['Age']
print(age.mean) #输出值为:29.64209269662921

2.抽取100个样本

age_sam = age.sample(100)
age_sam.describe()

python实现参数估计

3.计算置信区间

# 正态分布下的置信区间
def norm_conf(data,confidence = 0.95):
	sample_mean = np.mean(data)
	# numpy.std() 求标准差的时候默认是除以 n 的,即是有偏的,np.std无偏样本标准差方式为加入参数 ddof = 1;
	# pandas.std() 默认是除以n-1 的,即是无偏的
	sample_std = np.std(data,ddof = 1)
	conf_interval = scipy.satas.norm.interval(confidence,loc = sample_name,scale = sample_std)

python实现参数估计

# T分布下的置信区间
def ttest_conf(data,confidence = 0.95):
	sample_mean = np.mean(data)
	sample_std = np.std(data,ddof = 1)
	sample_size = len(data)
	conf_interval = scipy.satas.norm.interval(confidence, df = (sample_size - 1), loc = sample_name, scale = sample_std)

python实现参数估计

4.重复抽取数据

age_means = []
for i in range (1000):
	age_sample = age.sample(100, replace = True)
	sam_mean = age_sample.mean()
	age.means.append(sam_mean)
norm_conf(age_means)
ttest_conf(age_means)

python实现参数估计
python实现参数估计

5.绘制图像

import seaborn as sns 
from matplotlib import pyplot as plt

sns.set_palette("hls") #设置所有图的颜色,使用hls色彩空间
sns.distplot(scale_means,color="r",bins=10,kde=True)
plt.title('Age')
plt.xlim(25,35)
plt.grid(True)
plt.show()

python实现参数估计
参考链接:
https://blog.csdn.net/qq_43315928/article/details/103658733