欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

ORB特征点匹配

程序员文章站 2022-03-07 12:01:00
...


特征点

特征点是图像中具有代表性的点,这些点在图像发生变化时,比如图像的旋转、缩放,将保持不变。图像中的角点和边缘相对来说更加“特别”,因为它们在不同的图像中辨识度更强。因此一种直观的提取特征的方式就是在图像之间辨认角点,并确定对应关系。角点的提取算法有Harris角点、FAST角点、GFTT角点,等等。但是在很多应用中角点不能满足需求,因为从远处看上去是角点的地方当相机离近时就不是角点了,或者当发生旋转时就认不出是角点了。因此研究人员设计了更加稳定的局部图像特征,如:SIFT、SURF、ORB等等。这些人工设计的特征点具有以下性质:

  • 可重复性:相同的特征可以在不同的图像中找到
  • 可区别性:不同的特征有不同的表达
  • 高效率:同一图像中特征点的数量小于像素的数量
  • 本地性:特征只与一小片图像区域有关

特征点是由关键点(Key-point)和描述子(Discriptor)组成,关键点是指该特征点在图像中的位置,描述子通常是一个向量,描述了该关键点周围的像素信息。


ORB特征

ORB特征由关键点与描述子组成。它的关键点称为“Oriented FAST”,是一种改进的FAST角点,它的描述子为BRIEF。
提取ORB特征分为如下两个步骤:

  1. oFAST角点提取:找出图像中的角点,与原来的FAST算法相比,ORB中计算了特征点的主方向,为BRIEF描述子增加了旋转不变性
  2. BRIEF描述子:对前一步找到的关键点周围的像素区域进行描述,由于BRIEF对于图像旋转十分敏感,因此ORB对BRIEF进行了改进,利用上一步计算出的方向信息增强BRIEF的旋转不变性。

oFAST角点提取

先来了解一下FAST关键点:有一个像素点p,快速的将p像素点的亮度与其周围16个像素点的亮度进行比较。这16个像素点将被划分为三类(比p点亮、比p点暗、与p点亮度相似)。如果超过8个像素点比p点更亮互更暗,则把p点作为一个关键点。ORB特征点匹配
FAST角点没有方向信息,而且由于它取固定半径为3的圆因此也存在尺度问题(远看是角点,近看就不是角点了)。因此ORB算法使用了图像金字塔(image pyramid)来解决尺度问题。图像金子塔每往上一层就对图像进行一个固定倍率的缩放,较小的图像可以当作远景,如图:
ORB特征点匹配
ORB通过对图像的每一层进行关键点的提取从而部分解决了尺度问题。
在旋转方面,ORB根据关键点周围灰度值的变化为每个关键点分配一个方向。为了检测灰度值的变化ORB使用了图像灰度质心(intensity centroid),图像灰度质心假设一个点的灰度强度是偏离中心的,计算步骤如下:

  1. 在一个图像块(patch)中定义图像块的矩为:ORB特征点匹配

  2. 通过矩找到图像块的质心
    ORB特征点匹配

  3. 由图像块的中心O与质心O构建一个方向向量OC,所以特征点的方向可以定义为:
    ORB特征点匹配
    下图是一个例子:
    ORB特征点匹配
    通过以上的方法,FAST角点便具有了尺度与旋转的描述,提升了其在不同图像中的鲁棒性,因此ORB中这种改进的FAST称为Oriented FAST (oFAST)。

BRIEF 描述子(Binary robust independent elementary feature)

提取了oFAST关键点后需要对每一个关键点计算描述子。BRIEF是一种二进制描述子,描述向量由多个0和1组成。简而言之,每个关键点由一个128-512位的二进制字符串表示
ORB特征点匹配
二进制特征向量的每一位取0还是取1是由关键点周围两个随机像素(比如p和q)的大小关系决定的:如果p大于q则取1,反之取0。如果取128对这样的p和q,最后就得到一个128维由0和1组成的向量。由于是随机选取关键点附近的点对(p,q),BRIEF对高频噪声敏感,因此应该先对图像进行高斯滤波。ORB中这两个点(p,q)的选取是服从以图像块为中心的高斯分布的,并且选择的二进制特征向量维数为256维。
在BRIEF的论文原文中,点对(p和q)的采样有5种方式:ORB特征点匹配

  • 第一种(G I)服从均匀分布
  • 第二次 (G II) 服从以图像块几何中心为中心的高斯分布
  • 第三种 (G III)第一个采样点服从以图像块几何中心为中心的高斯分布,第二种服从以第一个采样点为中心的高斯分布
  • 后面两种是极坐标采样
    由于第二种方式效果更好,所以论文中使用的是第二种采样方式。原始的BRIEF描述子不具有旋转不变性(对旋转很敏感),因此在图像旋转时容易丢失。而ORB在关键点提取阶段计算了关键点的方向,所以利用方向信息计算旋转之后的“Steer BRIEF”特征,使描述子具有良好的旋转不变性。

下面我写了一段代码用于生成G I、G II 、G III中的采样坐标构成的 “模板”(pattern):

#include <iostream>
#include <stdlib.h>
#include <math.h>
#include <time.h>

using namespace std;

template<class T> 
class Point
{
    private:
        T X;
        T Y;
    public:
        T getX() {
            return X;
        }
        T getY() {
            return Y; 
        }
        Point(){
            X = (T)0;
            Y = (T)0;
        }
        Point(T x, T y) {
            X = x;
            Y = y;
        }
};

typedef Point<double> Point2f;

class Random 
{
    private:
        const static int NSUM = 100;//N个独立同分布变量
        constexpr static double PI = 3.141592654;
    public:
        static double gaussRand(void);//静态成员变量,使用类名调用
        static double gaussRandBM(void);//通过Box-Muller算法生成一个高斯随机数
        static Point2f randPointGauss();//产生一个中心为原点(均值为0),服从二维标准正态分布的采样点
        static Point2f randPointGauss(Point2f center, double sd);//产生一个服从以center为中心点(均值),标准差为sd的高斯分布采样点
        static Point2f randPointUniform(int a, int b);//服从均匀分布的采样坐标点
        static int * Orb_PatternI(const int N, int a, int b);//产生由n个点对构成的pattern
        static int * Orb_PatternII(const int N, double sd, int boundrySize);//产生由n个点对构成的pattern, 以原点为中心采集两次
        static int * Orb_PatternIII(const int N, double sd, int boundrySize);

};

/**
 *  利用中心极限定理,生成一个符合标准正太分布的随机数
 *  @return 返回一个double类型的符合高斯分布的随机数
 */
double Random::gaussRand() {
    double x = 0;//用于求和
    //产生NSUM个0-1之间的随机数求和
    //srand((unsigned)time(NULL)); 
    for (int i = 0; i < NSUM; i++) {
        x += (double) rand() / (RAND_MAX+1.0);
    }
    x = (x - NSUM * 0.5) / sqrt(NSUM/12);//标准化,转化为标准正态分布
    return x;
}

double Random::gaussRandBM() {
    static double U, V;
    static int phase = 0;
    double z;
    
    if(phase == 0)
    {
         U = rand() / (RAND_MAX + 1.0);
         V = rand() / (RAND_MAX + 1.0);
         z = sqrt(-2.0 * log(U))* sin(2.0 * PI * V);
    }
    else
    {
         z = sqrt(-2.0 * log(U)) * cos(2.0 * PI * V);
    }
    phase = 1 - phase;
    return z;
}

Point2f Random::randPointUniform(int a, int b) {
    Point2f p((rand() % (b-a+1))+ a,(rand() % (b-a+1))+ a);
    return p;
}

Point2f Random::randPointGauss() {
    Point2f p(gaussRandBM(),gaussRandBM());
    return p;
}

Point2f Random::randPointGauss(Point2f center, double sd){
    Point2f p(center.getX()+gaussRandBM()*sd,center.getY() + gaussRandBM() * sd);
    return p;
}

int *Random::Orb_PatternI(const int N, int a, int b){
    static int * orb_pattern;//延长生命周期
    orb_pattern = new int[4*N];
    for(int i = 0; i < 4 * N; i+=2) {
        Point2f p1 = randPointUniform(a,b);
        orb_pattern[i] = p1.getX();
        orb_pattern[i + 1] = p1.getY();
    }
    return orb_pattern;
}

int * Random::Orb_PatternII(const int N, double sd, int boundrySize) {
    static int * orb_pattern;//延长生命周期
    orb_pattern = new int[4*N];
    Point2f center(0,0);
    for(int i = 0; i < 4 * N; i+=2) {
        Point2f p1 = randPointGauss(center,sd/5.0);
        if (p1.getX() < -boundrySize || p1.getY() < -boundrySize ||p1.getX() > boundrySize || p1.getY() > boundrySize) {
            i-=2;
            continue;
        }
        orb_pattern[i] = p1.getX();
        orb_pattern[i + 1] = p1.getY();
    }
    return orb_pattern;
}

int * Random::Orb_PatternIII(const int N, double sd, int boundrySize) {
    static int * orb_pattern;//延长生命周期
    orb_pattern = new int[4*N];
    Point2f center(0,0);
    Point2f p1, p2;
    for(int i = 0; i < 4 * N; i+=4) {
        p1 = randPointGauss(center,sd/5.0);
        if (p1.getX() < -boundrySize || p1.getY() < -boundrySize ||p1.getX() >= boundrySize-1 || p1.getY() >= boundrySize-1) {
            i-=4;
            continue;
        }
        orb_pattern[i] = p1.getX();
        orb_pattern[i + 1] = p1.getY();
    }
    for(int i = 2; i < 4 * N; i+=4) {
        p2 = randPointGauss(p1,sd/10.0);
        if (p2.getX() < -boundrySize || p2.getY() < -boundrySize ||p2.getX() >= boundrySize-1 || p2.getY() >= boundrySize-1) {
            i-=4;
            continue;
        }
        orb_pattern[i] = p2.getX();
        orb_pattern[i + 1] = p2.getY();
    }
    return orb_pattern;
}

int main() {
    int * pattern = Random::Orb_PatternII(256,16,13);
     for(int i = 0; i < 4*256; i+=4) {
       cout<< pattern[i] << ","<< pattern[i+1] <<","<< pattern[i+2] <<","<< pattern[i+3] <<","<<endl; ;
    }
    // int * pattern = Random::Orb_PatternI(256,-13,13);
    //  for(int i = 0; i < 4*256; i+=4) {
    //    cout<< pattern[i] << ","<< pattern[i+1] <<","<< pattern[i+2] <<","<< pattern[i+3] <<","<<endl; ;
    // }
}

BRIEF具有一个重要的特性,即每个位特征具有较大的方差,且均值接近0.5。 但是,一旦将其沿关键点方向定向,它就会失去此属性并变得更加分散。 大的方差使特征更具区分性,因为它对输入的响应不同。 另一个理想的特性是使二进制特征向量不相关,因为这样每一个向量都有助于结果。 为了解决所有这些问题,ORB在所有可能的二进制向量中进行贪婪搜索,以找到方差高且均值接近0.5且不相关的向量。 结果称为rBRIEF

在OpenCV orb.cpp的源码中有这样一个数组bit_pattern_31_,如图:ORB特征点匹配
这是orb使用某种学习算法(论文里有说明)训练好的256个点对,使用这256个点对的效果会比较好,当然也可以使用自己生成的随机采样点对。


特征匹配

不同图像之间提取完成特征点后就可以进行特征匹配,找到不同图像之间特征点的对应关系。最简单的匹配算法是暴力匹配 (Brute-Force Matcher):对图像I中的每一个特征点与图像II中的所有特征点测量描述子的距离,然后排序,取最近的一个作为匹配点。描述子距离表示两个特征点之间的相似程度。对于rBRIEF这种二进制描述子,通常使用汉明距离(Hamming distance):两个二进制串不同位数的个数。


实践

下面代码演示了opencv中ORB的使用方法:

#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <chrono>

using namespace std;
using namespace cv;

int main(int argc, char * argv[]) {
	if(argc != 3) {
		cout << "usage:feature_extraction img1 img2" << endl;
		return 1;
	}
	//读取图像
	Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);
	Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);
	assert(img_1.data != nullptr && img_2.data != nullptr);


	//初始化
	vector<KeyPoint> keypoints_1, keypoints_2;//关键点
	Mat descriptors_1, descriptors_2;//描述子
	Ptr<FeatureDetector> detector = ORB::create();
	Ptr<DescriptorExtractor> descriptor = ORB::create();
	Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");//暴力匹配

	//--第一步检测Oriented FAST角点位置
	chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
	detector->detect(img_1, keypoints_1);
	detector->detect(img_2, keypoints_2);

	//--第二步根据角点位置计算BRIEF描述子
	descriptor->compute(img_1, keypoints_1, descriptors_1);
	descriptor->compute(img_2, keypoints_2, descriptors_2);
	chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
	chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
	cout << "extract ORB cost = " << time_used.count() << "seconds" << endl;

	Mat outimg1;
	drawKeypoints(img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
	imshow("ORB features", outimg1);

	//--第三步:对两幅图像中的BRIEF描述子进行匹配,使用Hamming距离
	vector<DMatch> matches;
	t1 = chrono::steady_clock::now();
	matcher->match(descriptors_1, descriptors_2, matches);
	t2 = chrono::steady_clock::now();
	time_used = chrono::duration_cast<chrono::duration<double>> (t2 - t1);
	cout << "match ORB cost = " << time_used.count() << "seconds." << endl;


	//--第四步:匹配点对筛选
	auto min_max = minmax_element(matches.begin(), matches.end(), 
					[](const DMatch &m1, const DMatch &m2){return m1.distance < m2.distance;});
	double min_dist = min_max.first->distance;
	double max_dist = min_max.second->distance;

	printf("-- Mat dist : %f \n", max_dist);
	printf("-- Mat dist : %f \n", min_dist);


	//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误。但是有时最小距离会非常小,所以要设置一个经验值30作为下限
	vector<DMatch> good_matches;
	for (int i = 0; i < descriptors_1.rows; i++) {
		if(matches[i].distance <= max(2 * min_dist, 30.0)) {
			good_matches.push_back(matches[i]);
		}
	}

	//--第五步:绘制匹配结果
	Mat img_match;
	Mat img_goodmatch;
	drawMatches(img_1, keypoints_1, img_2,keypoints_2, matches, img_match);
	drawMatches(img_1, keypoints_1, img_2,keypoints_2, good_matches, img_goodmatch);
	imshow("all matches", img_match);
	imshow("good matches", img_goodmatch);
	waitKey(0);
	DMatch m{0,0,256};
	return 0;
	
}

运行效果如下:
ORB特征点匹配
下面代码演示如何手写ORB特征,代码中ORB_pattern数组使用的是ORB训练好的采样点数据,当然也可以使用前文提到的代码自己生成随机采样的数据,但是效果较差。

#include <iostream>
#include <opencv2/opencv.hpp>
#include <string>
#include <nmmintrin.h>
#include <chrono>

using namespace std;

//global varluables
string first_file = "./1.png";
string second_file = "./2.png";

//unsigned int is 32bit, will have 8, so is 8*32 = 256 bit
typedef vector<uint32_t> DescType;//Descriptor type

/**
 *  compute descriptor of orb keypoints
 *  @param img input image
 *  @param ketpoints detected by fast keypoints
 *  @param descriptors descriptors
 * 
 */
void ComputeORB(const cv::Mat &img, vector<cv::KeyPoint> &keypoints, vector<DescType> & descriptors);

/**
 *  brute-force match two sets of decriptors
 *  @param desc1 the first descriptor
 *  @param desc2 the second descriptor
 *  @param matches matches of two images 
 * 
 */
void BfMatch(const vector<DescType> &desc1, const vector<DescType> &desc2, vector<cv::DMatch> &matches);

int main(int argc, char **argv) {
    //load image
    cv::Mat first_image = cv::imread(first_file, CV_LOAD_IMAGE_GRAYSCALE);
    cv::Mat second_image = cv::imread(second_file, CV_LOAD_IMAGE_GRAYSCALE);
    assert(first_image.data != nullptr && second_image.data != nullptr);

    //detect FAST keypoints, using threshold = 40 
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    vector<cv::KeyPoint> keypoints1;
    cv::FAST(first_image, keypoints1, 40);
    //compute descriptors by keypoints1
    vector<DescType> descriptor1;
    ComputeORB(first_image,  keypoints1,descriptor1);
    // same for the second
    vector<cv::KeyPoint> keypoints2;
    vector<DescType> descriptor2;
    cv::FAST(second_image, keypoints2, 40);
    ComputeORB(second_image, keypoints2, descriptor2);
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    cout << "extract ORB cost = " << time_used.count() << " seconds. " << endl;

    // find matches
    vector<cv::DMatch> matches;
    t1 = chrono::steady_clock::now();
    BfMatch(descriptor1, descriptor2, matches);
    t2 = chrono::steady_clock::now();
    time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    cout << "match ORB cost = " << time_used.count() << " seconds. " << endl;
    cout << "matches: " << matches.size() << endl;

    // plot the matches
    cv::Mat image_show;
    cv::drawMatches(first_image, keypoints1, second_image, keypoints2, matches, image_show);
    cv::imshow("matches", image_show);
    cv::imwrite("matches.png", image_show);
    cv::waitKey(0);

    cout << "done." << endl;
    return 0;
}

// -------------------------------------------------------------------------------------------------- //
// ORB pattern
int ORB_pattern[256 * 4] = {
8, -3, 9, 5/*mean (0), correlation (0)*/,
  4, 2, 7, -12/*mean (1.12461e-05), correlation (0.0437584)*/,
  -11, 9, -8, 2/*mean (3.37382e-05), correlation (0.0617409)*/,
  7, -12, 12, -13/*mean (5.62303e-05), correlation (0.0636977)*/,
  2, -13, 2, 12/*mean (0.000134953), correlation (0.085099)*/,
  1, -7, 1, 6/*mean (0.000528565), correlation (0.0857175)*/,
  -2, -10, -2, -4/*mean (0.0188821), correlation (0.0985774)*/,
  -13, -13, -11, -8/*mean (0.0363135), correlation (0.0899616)*/,
  -13, -3, -12, -9/*mean (0.121806), correlation (0.099849)*/,
  10, 4, 11, 9/*mean (0.122065), correlation (0.093285)*/,
  -13, -8, -8, -9/*mean (0.162787), correlation (0.0942748)*/,
  -11, 7, -9, 12/*mean (0.21561), correlation (0.0974438)*/,
  7, 7, 12, 6/*mean (0.160583), correlation (0.130064)*/,
  -4, -5, -3, 0/*mean (0.228171), correlation (0.132998)*/,
  -13, 2, -12, -3/*mean (0.00997526), correlation (0.145926)*/,
  -9, 0, -7, 5/*mean (0.198234), correlation (0.143636)*/,
  12, -6, 12, -1/*mean (0.0676226), correlation (0.16689)*/,
  -3, 6, -2, 12/*mean (0.166847), correlation (0.171682)*/,
  -6, -13, -4, -8/*mean (0.101215), correlation (0.179716)*/,
  11, -13, 12, -8/*mean (0.200641), correlation (0.192279)*/,
  4, 7, 5, 1/*mean (0.205106), correlation (0.186848)*/,
  5, -3, 10, -3/*mean (0.234908), correlation (0.192319)*/,
  3, -7, 6, 12/*mean (0.0709964), correlation (0.210872)*/,
  -8, -7, -6, -2/*mean (0.0939834), correlation (0.212589)*/,
  -2, 11, -1, -10/*mean (0.127778), correlation (0.20866)*/,
  -13, 12, -8, 10/*mean (0.14783), correlation (0.206356)*/,
  -7, 3, -5, -3/*mean (0.182141), correlation (0.198942)*/,
  -4, 2, -3, 7/*mean (0.188237), correlation (0.21384)*/,
  -10, -12, -6, 11/*mean (0.14865), correlation (0.23571)*/,
  5, -12, 6, -7/*mean (0.222312), correlation (0.23324)*/,
  5, -6, 7, -1/*mean (0.229082), correlation (0.23389)*/,
  1, 0, 4, -5/*mean (0.241577), correlation (0.215286)*/,
  9, 11, 11, -13/*mean (0.00338507), correlation (0.251373)*/,
  4, 7, 4, 12/*mean (0.131005), correlation (0.257622)*/,
  2, -1, 4, 4/*mean (0.152755), correlation (0.255205)*/,
  -4, -12, -2, 7/*mean (0.182771), correlation (0.244867)*/,
  -8, -5, -7, -10/*mean (0.186898), correlation (0.23901)*/,
  4, 11, 9, 12/*mean (0.226226), correlation (0.258255)*/,
  0, -8, 1, -13/*mean (0.0897886), correlation (0.274827)*/,
  -13, -2, -8, 2/*mean (0.148774), correlation (0.28065)*/,
  -3, -2, -2, 3/*mean (0.153048), correlation (0.283063)*/,
  -6, 9, -4, -9/*mean (0.169523), correlation (0.278248)*/,
  8, 12, 10, 7/*mean (0.225337), correlation (0.282851)*/,
  0, 9, 1, 3/*mean (0.226687), correlation (0.278734)*/,
  7, -5, 11, -10/*mean (0.00693882), correlation (0.305161)*/,
  -13, -6, -11, 0/*mean (0.0227283), correlation (0.300181)*/,
  10, 7, 12, 1/*mean (0.125517), correlation (0.31089)*/,
  -6, -3, -6, 12/*mean (0.131748), correlation (0.312779)*/,
  10, -9, 12, -4/*mean (0.144827), correlation (0.292797)*/,
  -13, 8, -8, -12/*mean (0.149202), correlation (0.308918)*/,
  -13, 0, -8, -4/*mean (0.160909), correlation (0.310013)*/,
  3, 3, 7, 8/*mean (0.177755), correlation (0.309394)*/,
  5, 7, 10, -7/*mean (0.212337), correlation (0.310315)*/,
  -1, 7, 1, -12/*mean (0.214429), correlation (0.311933)*/,
  3, -10, 5, 6/*mean (0.235807), correlation (0.313104)*/,
  2, -4, 3, -10/*mean (0.00494827), correlation (0.344948)*/,
  -13, 0, -13, 5/*mean (0.0549145), correlation (0.344675)*/,
  -13, -7, -12, 12/*mean (0.103385), correlation (0.342715)*/,
  -13, 3, -11, 8/*mean (0.134222), correlation (0.322922)*/,
  -7, 12, -4, 7/*mean (0.153284), correlation (0.337061)*/,
  6, -10, 12, 8/*mean (0.154881), correlation (0.329257)*/,
  -9, -1, -7, -6/*mean (0.200967), correlation (0.33312)*/,
  -2, -5, 0, 12/*mean (0.201518), correlation (0.340635)*/,
  -12, 5, -7, 5/*mean (0.207805), correlation (0.335631)*/,
  3, -10, 8, -13/*mean (0.224438), correlation (0.34504)*/,
  -7, -7, -4, 5/*mean (0.239361), correlation (0.338053)*/,
  -3, -2, -1, -7/*mean (0.240744), correlation (0.344322)*/,
  2, 9, 5, -11/*mean (0.242949), correlation (0.34145)*/,
  -11, -13, -5, -13/*mean (0.244028), correlation (0.336861)*/,
  -1, 6, 0, -1/*mean (0.247571), correlation (0.343684)*/,
  5, -3, 5, 2/*mean (0.000697256), correlation (0.357265)*/,
  -4, -13, -4, 12/*mean (0.00213675), correlation (0.373827)*/,
  -9, -6, -9, 6/*mean (0.0126856), correlation (0.373938)*/,
  -12, -10, -8, -4/*mean (0.0152497), correlation (0.364237)*/,
  10, 2, 12, -3/*mean (0.0299933), correlation (0.345292)*/,
  7, 12, 12, 12/*mean (0.0307242), correlation (0.366299)*/,
  -7, -13, -6, 5/*mean (0.0534975), correlation (0.368357)*/,
  -4, 9, -3, 4/*mean (0.099865), correlation (0.372276)*/,
  7, -1, 12, 2/*mean (0.117083), correlation (0.364529)*/,
  -7, 6, -5, 1/*mean (0.126125), correlation (0.369606)*/,
  -13, 11, -12, 5/*mean (0.130364), correlation (0.358502)*/,
  -3, 7, -2, -6/*mean (0.131691), correlation (0.375531)*/,
  7, -8, 12, -7/*mean (0.160166), correlation (0.379508)*/,
  -13, -7, -11, -12/*mean (0.167848), correlation (0.353343)*/,
  1, -3, 12, 12/*mean (0.183378), correlation (0.371916)*/,
  2, -6, 3, 0/*mean (0.228711), correlation (0.371761)*/,
  -4, 3, -2, -13/*mean (0.247211), correlation (0.364063)*/,
  -1, -13, 1, 9/*mean (0.249325), correlation (0.378139)*/,
  7, 1, 8, -6/*mean (0.000652272), correlation (0.411682)*/,
  1, -1, 3, 12/*mean (0.00248538), correlation (0.392988)*/,
  9, 1, 12, 6/*mean (0.0206815), correlation (0.386106)*/,
  -1, -9, -1, 3/*mean (0.0364485), correlation (0.410752)*/,
  -13, -13, -10, 5/*mean (0.0376068), correlation (0.398374)*/,
  7, 7, 10, 12/*mean (0.0424202), correlation (0.405663)*/,
  12, -5, 12, 9/*mean (0.0942645), correlation (0.410422)*/,
  6, 3, 7, 11/*mean (0.1074), correlation (0.413224)*/,
  5, -13, 6, 10/*mean (0.109256), correlation (0.408646)*/,
  2, -12, 2, 3/*mean (0.131691), correlation (0.416076)*/,
  3, 8, 4, -6/*mean (0.165081), correlation (0.417569)*/,
  2, 6, 12, -13/*mean (0.171874), correlation (0.408471)*/,
  9, -12, 10, 3/*mean (0.175146), correlation (0.41296)*/,
  -8, 4, -7, 9/*mean (0.183682), correlation (0.402956)*/,
  -11, 12, -4, -6/*mean (0.184672), correlation (0.416125)*/,
  1, 12, 2, -8/*mean (0.191487), correlation (0.386696)*/,
  6, -9, 7, -4/*mean (0.192668), correlation (0.394771)*/,
  2, 3, 3, -2/*mean (0.200157), correlation (0.408303)*/,
  6, 3, 11, 0/*mean (0.204588), correlation (0.411762)*/,
  3, -3, 8, -8/*mean (0.205904), correlation (0.416294)*/,
  7, 8, 9, 3/*mean (0.213237), correlation (0.409306)*/,
  -11, -5, -6, -4/*mean (0.243444), correlation (0.395069)*/,
  -10, 11, -5, 10/*mean (0.247672), correlation (0.413392)*/,
  -5, -8, -3, 12/*mean (0.24774), correlation (0.411416)*/,
  -10, 5, -9, 0/*mean (0.00213675), correlation (0.454003)*/,
  8, -1, 12, -6/*mean (0.0293635), correlation (0.455368)*/,
  4, -6, 6, -11/*mean (0.0404971), correlation (0.457393)*/,
  -10, 12, -8, 7/*mean (0.0481107), correlation (0.448364)*/,
  4, -2, 6, 7/*mean (0.050641), correlation (0.455019)*/,
  -2, 0, -2, 12/*mean (0.0525978), correlation (0.44338)*/,
  -5, -8, -5, 2/*mean (0.0629667), correlation (0.457096)*/,
  7, -6, 10, 12/*mean (0.0653846), correlation (0.445623)*/,
  -9, -13, -8, -8/*mean (0.0858749), correlation (0.449789)*/,
  -5, -13, -5, -2/*mean (0.122402), correlation (0.450201)*/,
  8, -8, 9, -13/*mean (0.125416), correlation (0.453224)*/,
  -9, -11, -9, 0/*mean (0.130128), correlation (0.458724)*/,
  1, -8, 1, -2/*mean (0.132467), correlation (0.440133)*/,
  7, -4, 9, 1/*mean (0.132692), correlation (0.454)*/,
  -2, 1, -1, -4/*mean (0.135695), correlation (0.455739)*/,
  11, -6, 12, -11/*mean (0.142904), correlation (0.446114)*/,
  -12, -9, -6, 4/*mean (0.146165), correlation (0.451473)*/,
  3, 7, 7, 12/*mean (0.147627), correlation (0.456643)*/,
  5, 5, 10, 8/*mean (0.152901), correlation (0.455036)*/,
  0, -4, 2, 8/*mean (0.167083), correlation (0.459315)*/,
  -9, 12, -5, -13/*mean (0.173234), correlation (0.454706)*/,
  0, 7, 2, 12/*mean (0.18312), correlation (0.433855)*/,
  -1, 2, 1, 7/*mean (0.185504), correlation (0.443838)*/,
  5, 11, 7, -9/*mean (0.185706), correlation (0.451123)*/,
  3, 5, 6, -8/*mean (0.188968), correlation (0.455808)*/,
  -13, -4, -8, 9/*mean (0.191667), correlation (0.459128)*/,
  -5, 9, -3, -3/*mean (0.193196), correlation (0.458364)*/,
  -4, -7, -3, -12/*mean (0.196536), correlation (0.455782)*/,
  6, 5, 8, 0/*mean (0.1972), correlation (0.450481)*/,
  -7, 6, -6, 12/*mean (0.199438), correlation (0.458156)*/,
  -13, 6, -5, -2/*mean (0.211224), correlation (0.449548)*/,
  1, -10, 3, 10/*mean (0.211718), correlation (0.440606)*/,
  4, 1, 8, -4/*mean (0.213034), correlation (0.443177)*/,
  -2, -2, 2, -13/*mean (0.234334), correlation (0.455304)*/,
  2, -12, 12, 12/*mean (0.235684), correlation (0.443436)*/,
  -2, -13, 0, -6/*mean (0.237674), correlation (0.452525)*/,
  4, 1, 9, 3/*mean (0.23962), correlation (0.444824)*/,
  -6, -10, -3, -5/*mean (0.248459), correlation (0.439621)*/,
  -3, -13, -1, 1/*mean (0.249505), correlation (0.456666)*/,
  7, 5, 12, -11/*mean (0.00119208), correlation (0.495466)*/,
  4, -2, 5, -7/*mean (0.00372245), correlation (0.484214)*/,
  -13, 9, -9, -5/*mean (0.00741116), correlation (0.499854)*/,
  7, 1, 8, 6/*mean (0.0208952), correlation (0.499773)*/,
  7, -8, 7, 6/*mean (0.0220085), correlation (0.501609)*/,
  -7, -4, -7, 1/*mean (0.0233806), correlation (0.496568)*/,
  -8, 11, -7, -8/*mean (0.0236505), correlation (0.489719)*/,
  -13, 6, -12, -8/*mean (0.0268781), correlation (0.503487)*/,
  2, 4, 3, 9/*mean (0.0323324), correlation (0.501938)*/,
  10, -5, 12, 3/*mean (0.0399235), correlation (0.494029)*/,
  -6, -5, -6, 7/*mean (0.0420153), correlation (0.486579)*/,
  8, -3, 9, -8/*mean (0.0548021), correlation (0.484237)*/,
  2, -12, 2, 8/*mean (0.0616622), correlation (0.496642)*/,
  -11, -2, -10, 3/*mean (0.0627755), correlation (0.498563)*/,
  -12, -13, -7, -9/*mean (0.0829622), correlation (0.495491)*/,
  -11, 0, -10, -5/*mean (0.0843342), correlation (0.487146)*/,
  5, -3, 11, 8/*mean (0.0929937), correlation (0.502315)*/,
  -2, -13, -1, 12/*mean (0.113327), correlation (0.48941)*/,
  -1, -8, 0, 9/*mean (0.132119), correlation (0.467268)*/,
  -13, -11, -12, -5/*mean (0.136269), correlation (0.498771)*/,
  -10, -2, -10, 11/*mean (0.142173), correlation (0.498714)*/,
  -3, 9, -2, -13/*mean (0.144141), correlation (0.491973)*/,
  2, -3, 3, 2/*mean (0.14892), correlation (0.500782)*/,
  -9, -13, -4, 0/*mean (0.150371), correlation (0.498211)*/,
  -4, 6, -3, -10/*mean (0.152159), correlation (0.495547)*/,
  -4, 12, -2, -7/*mean (0.156152), correlation (0.496925)*/,
  -6, -11, -4, 9/*mean (0.15749), correlation (0.499222)*/,
  6, -3, 6, 11/*mean (0.159211), correlation (0.503821)*/,
  -13, 11, -5, 5/*mean (0.162427), correlation (0.501907)*/,
  11, 11, 12, 6/*mean (0.16652), correlation (0.497632)*/,
  7, -5, 12, -2/*mean (0.169141), correlation (0.484474)*/,
  -1, 12, 0, 7/*mean (0.169456), correlation (0.495339)*/,
  -4, -8, -3, -2/*mean (0.171457), correlation (0.487251)*/,
  -7, 1, -6, 7/*mean (0.175), correlation (0.500024)*/,
  -13, -12, -8, -13/*mean (0.175866), correlation (0.497523)*/,
  -7, -2, -6, -8/*mean (0.178273), correlation (0.501854)*/,
  -8, 5, -6, -9/*mean (0.181107), correlation (0.494888)*/,
  -5, -1, -4, 5/*mean (0.190227), correlation (0.482557)*/,
  -13, 7, -8, 10/*mean (0.196739), correlation (0.496503)*/,
  1, 5, 5, -13/*mean (0.19973), correlation (0.499759)*/,
  1, 0, 10, -13/*mean (0.204465), correlation (0.49873)*/,
  9, 12, 10, -1/*mean (0.209334), correlation (0.49063)*/,
  5, -8, 10, -9/*mean (0.211134), correlation (0.503011)*/,
  -1, 11, 1, -13/*mean (0.212), correlation (0.499414)*/,
  -9, -3, -6, 2/*mean (0.212168), correlation (0.480739)*/,
  -1, -10, 1, 12/*mean (0.212731), correlation (0.502523)*/,
  -13, 1, -8, -10/*mean (0.21327), correlation (0.489786)*/,
  8, -11, 10, -6/*mean (0.214159), correlation (0.488246)*/,
  2, -13, 3, -6/*mean (0.216993), correlation (0.50287)*/,
  7, -13, 12, -9/*mean (0.223639), correlation (0.470502)*/,
  -10, -10, -5, -7/*mean (0.224089), correlation (0.500852)*/,
  -10, -8, -8, -13/*mean (0.228666), correlation (0.502629)*/,
  4, -6, 8, 5/*mean (0.22906), correlation (0.498305)*/,
  3, 12, 8, -13/*mean (0.233378), correlation (0.503825)*/,
  -4, 2, -3, -3/*mean (0.234323), correlation (0.476692)*/,
  5, -13, 10, -12/*mean (0.236392), correlation (0.475462)*/,
  4, -13, 5, -1/*mean (0.236842), correlation (0.504132)*/,
  -9, 9, -4, 3/*mean (0.236977), correlation (0.497739)*/,
  0, 3, 3, -9/*mean (0.24314), correlation (0.499398)*/,
  -12, 1, -6, 1/*mean (0.243297), correlation (0.489447)*/,
  3, 2, 4, -8/*mean (0.00155196), correlation (0.553496)*/,
  -10, -10, -10, 9/*mean (0.00239541), correlation (0.54297)*/,
  8, -13, 12, 12/*mean (0.0034413), correlation (0.544361)*/,
  -8, -12, -6, -5/*mean (0.003565), correlation (0.551225)*/,
  2, 2, 3, 7/*mean (0.00835583), correlation (0.55285)*/,
  10, 6, 11, -8/*mean (0.00885065), correlation (0.540913)*/,
  6, 8, 8, -12/*mean (0.0101552), correlation (0.551085)*/,
  -7, 10, -6, 5/*mean (0.0102227), correlation (0.533635)*/,
  -3, -9, -3, 9/*mean (0.0110211), correlation (0.543121)*/,
  -1, -13, -1, 5/*mean (0.0113473), correlation (0.550173)*/,
  -3, -7, -3, 4/*mean (0.0140913), correlation (0.554774)*/,
  -8, -2, -8, 3/*mean (0.017049), correlation (0.55461)*/,
  4, 2, 12, 12/*mean (0.01778), correlation (0.546921)*/,
  2, -5, 3, 11/*mean (0.0224022), correlation (0.549667)*/,
  6, -9, 11, -13/*mean (0.029161), correlation (0.546295)*/,
  3, -1, 7, 12/*mean (0.0303081), correlation (0.548599)*/,
  11, -1, 12, 4/*mean (0.0355151), correlation (0.523943)*/,
  -3, 0, -3, 6/*mean (0.0417904), correlation (0.543395)*/,
  4, -11, 4, 12/*mean (0.0487292), correlation (0.542818)*/,
  2, -4, 2, 1/*mean (0.0575124), correlation (0.554888)*/,
  -10, -6, -8, 1/*mean (0.0594242), correlation (0.544026)*/,
  -13, 7, -11, 1/*mean (0.0597391), correlation (0.550524)*/,
  -13, 12, -11, -13/*mean (0.0608974), correlation (0.55383)*/,
  6, 0, 11, -13/*mean (0.065126), correlation (0.552006)*/,
  0, -1, 1, 4/*mean (0.074224), correlation (0.546372)*/,
  -13, 3, -9, -2/*mean (0.0808592), correlation (0.554875)*/,
  -9, 8, -6, -3/*mean (0.0883378), correlation (0.551178)*/,
  -13, -6, -8, -2/*mean (0.0901035), correlation (0.548446)*/,
  5, -9, 8, 10/*mean (0.0949843), correlation (0.554694)*/,
  2, 7, 3, -9/*mean (0.0994152), correlation (0.550979)*/,
  -1, -6, -1, -1/*mean (0.10045), correlation (0.552714)*/,
  9, 5, 11, -2/*mean (0.100686), correlation (0.552594)*/,
  11, -3, 12, -8/*mean (0.101091), correlation (0.532394)*/,
  3, 0, 3, 5/*mean (0.101147), correlation (0.525576)*/,
  -1, 4, 0, 10/*mean (0.105263), correlation (0.531498)*/,
  3, -6, 4, 5/*mean (0.110785), correlation (0.540491)*/,
  -13, 0, -10, 5/*mean (0.112798), correlation (0.536582)*/,
  5, 8, 12, 11/*mean (0.114181), correlation (0.555793)*/,
  8, 9, 9, -6/*mean (0.117431), correlation (0.553763)*/,
  7, -4, 8, -12/*mean (0.118522), correlation (0.553452)*/,
  -10, 4, -10, 9/*mean (0.12094), correlation (0.554785)*/,
  7, 3, 12, 4/*mean (0.122582), correlation (0.555825)*/,
  9, -7, 10, -2/*mean (0.124978), correlation (0.549846)*/,
  7, 0, 12, -2/*mean (0.127002), correlation (0.537452)*/,
  -1, -6, 0, -11/*mean (0.127148), correlation (0.547401)*/
};

void ComputeORB(const cv::Mat &img, vector<cv::KeyPoint> &keypoints, vector<DescType> & descriptors) {
    const int half_patch_size = 8;
    const int half_boundary = 16;
    int bad_points = 0;
    for (auto &kp : keypoints) {
        if(kp.pt.x < half_boundary || kp.pt.y < half_boundary || kp.pt.x >= img.cols - half_boundary || kp.pt.y >= img.rows - half_boundary) {
            // outside
            bad_points++;
            descriptors.push_back({});
            continue;
        }
        float m01 = 0, m10 = 0;
        for (int dx = -half_patch_size; dx < half_patch_size; ++dx) {
            for (int dy = -half_patch_size; dy < half_patch_size; ++dy) {
                    uchar pixel = img.at<uchar>(kp.pt.y + dy, kp.pt.x + dx);//以当前关键点为原点
                    m10 += dx * pixel;
                    m01 += dy * pixel;
            }
         }
        // angle should be arc tan(m01/m10);
        float m_sqrt = sqrt(m01 * m01 + m10 * m10) + 1e-18; // avoid divide by zero
        float sin_theta = m01 / m_sqrt;
        float cos_theta = m10 / m_sqrt;

        DescType desc(8,0);
        for(int i = 0; i < 8; i++) {
            uint32_t d = 0;//d的每一位初始化为0
            for(int k = 0; k < 32; k++) {
                int idx_pq = i * 32 + k;
                cv::Point2f p(ORB_pattern[idx_pq * 4], ORB_pattern[idx_pq * 4 + 1]);
                cv::Point2f q(ORB_pattern[idx_pq * 4 + 2], ORB_pattern[idx_pq * 4 + 3]);
                // rotate with theta,利用三角函数旋转pq两个点,并转化为以kp为原点
                cv::Point2f pp = cv::Point2f(cos_theta * p.x - sin_theta * p.y, sin_theta * p.x + cos_theta * p.y) + kp.pt;
                cv::Point2f qq = cv::Point2f(cos_theta * q.x - sin_theta * q.y, sin_theta * q.x + cos_theta * q.y) + kp.pt;
                if (img.at<uchar>(pp.y, pp.x) < img.at<uchar>(qq.y, qq.x)) {
                    d |= 1 << k;
                }
            }
            desc[i] = d;
        }
        descriptors.push_back(desc);
    }
    cout << "bad/total: " << bad_points << "/" << keypoints.size() << endl;
 }

 // brute-force matching
void BfMatch(const vector<DescType> &desc1, const vector<DescType> &desc2, vector<cv::DMatch> &matches) {
  const int d_max = 40;

  for (size_t i1 = 0; i1 < desc1.size(); ++i1) {
    if (desc1[i1].empty()) continue;
    cv::DMatch m{i1, 0, 256};
    for (size_t i2 = 0; i2 < desc2.size(); ++i2) {
      if (desc2[i2].empty()) continue;
      int distance = 0;
      for (int k = 0; k < 8; k++) {
        distance += _mm_popcnt_u32(desc1[i1][k] ^ desc2[i2][k]);
      }
      if (distance < d_max && distance < m.distance) {
        m.distance = distance;
        m.trainIdx = i2;
      }
    }
    if (m.distance < d_max) {
      matches.push_back(m);
    }
  }
}


下面是运行效果
ORB特征点匹配
ORB特征点匹配


参考

  • https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_orb/py_orb.html

  • https://medium.com/analytics-vidhya/introduction-to-orb-oriented-fast-and-rotated-brief-4220e8ec40cf

  • Rublee E , Rabaud V , Konolige K , et al. ORB: An efficient alternative to SIFT or SURF[C]// 2011 International Conference on Computer Vision. IEEE, 2012.

  • Calonder M , Lepetit V , Strecha C , et al. BRIEF: Binary Robust Independent Elementary Features[C]// Computer Vision - ECCV 2010, 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV. Springer, Berlin, Heidelberg, 2010.

  • 视觉SLAM十四讲

相关标签: SLAM