从零手写VIO|第二节——imu.cpp代码解析
程序员文章站
2022-03-07 11:44:42
...
1.用欧拉角表示body坐标系到惯性系的旋转
- 下方公式表示的是用欧拉角表示从惯性系到body系的转换:
// euler2Rotation: body frame to interitail frame
Eigen::Matrix3d euler2Rotation( Eigen::Vector3d eulerAngles)
{
double roll = eulerAngles(0);
double pitch = eulerAngles(1);
double yaw = eulerAngles(2);
double cr = cos(roll); double sr = sin(roll);
double cp = cos(pitch); double sp = sin(pitch);
double cy = cos(yaw); double sy = sin(yaw);
Eigen::Matrix3d RIb;
RIb<< cy*cp , cy*sp*sr - sy*cr, sy*sr + cy* cr*sp,
sy*cp, cy *cr + sy*sr*sp, sp*sy*cr - cy*sr,
-sp, cp*sr, cp*cr;
return RIb;
}
2. 惯性系下的欧拉角速度转换到body坐标系
Eigen::Matrix3d eulerRates2bodyRates(Eigen::Vector3d eulerAngles)
{
double roll = eulerAngles(0);
double pitch = eulerAngles(1);
double cr = cos(roll); double sr = sin(roll);
double cp = cos(pitch); double sp = sin(pitch);
Eigen::Matrix3d R;
R<< 1, 0, -sp,
0, cr, sr*cp,
0, -sr, cr*cp;
return R;
}
3.addIMUnoise
高斯白噪声的离散时间的方差(IMU传感器获取数据为离散采样)(与连续时间相比较):
Bias随机游走(其导数服从高斯分布):
加速度的误差模型:
陀螺仪的误差模型
void IMU::addIMUnoise(MotionData& data)
{
std::random_device rd;
std::default_random_engine generator_(rd());
std::normal_distribution<double> noise(0.0, 1.0);
Eigen::Vector3d noise_gyro(noise(generator_),noise(generator_),noise(generator_));
Eigen::Matrix3d gyro_sqrt_cov = param_.gyro_noise_sigma * Eigen::Matrix3d::Identity();
data.imu_gyro = data.imu_gyro + gyro_sqrt_cov * noise_gyro / sqrt( param_.imu_timestep ) + gyro_bias_;
Eigen::Vector3d noise_acc(noise(generator_),noise(generator_),noise(generator_));
Eigen::Matrix3d acc_sqrt_cov = param_.acc_noise_sigma * Eigen::Matrix3d::Identity();
data.imu_acc = data.imu_acc + acc_sqrt_cov * noise_acc / sqrt( param_.imu_timestep ) + acc_bias_;
// gyro_bias update
Eigen::Vector3d noise_gyro_bias(noise(generator_),noise(generator_),noise(generator_));
gyro_bias_ += param_.gyro_bias_sigma * sqrt(param_.imu_timestep ) * noise_gyro_bias;
data.imu_gyro_bias = gyro_bias_;
// acc_bias update
Eigen::Vector3d noise_acc_bias(noise(generator_),noise(generator_),noise(generator_));
acc_bias_ += param_.acc_bias_sigma * sqrt(param_.imu_timestep ) * noise_acc_bias;
data.imu_acc_bias = acc_bias_;
}
4. IMU::MotionModel
MotionData IMU::MotionModel(double t)
{
MotionData data;
// param
float ellipse_x = 15;
float ellipse_y = 20;
float z = 1; // z轴做sin运动
float K1 = 10; // z轴的正弦频率是x,y的k1倍
float K = M_PI/ 10; // 20 * K = 2pi 由于我们采取的是时间是20s, 系数K控制yaw正好旋转一圈,运动一周
// translation
// twb: body frame in world frame
Eigen::Vector3d position( ellipse_x * cos( K * t) + 5, ellipse_y * sin( K * t) + 5, z * sin( K1 * K * t ) + 5);
Eigen::Vector3d dp(- K * ellipse_x * sin(K*t), K * ellipse_y * cos(K*t), z*K1*K * cos(K1 * K * t)); // position导数 in world frame
double K2 = K*K;
Eigen::Vector3d ddp( -K2 * ellipse_x * cos(K*t), -K2 * ellipse_y * sin(K*t), -z*K1*K1*K2 * sin(K1 * K * t)); // position二阶导数
// Rotation
double k_roll = 0.1;
double k_pitch = 0.2;
Eigen::Vector3d eulerAngles(k_roll * cos(t) , k_pitch * sin(t) , K*t ); // roll ~ [-0.2, 0.2], pitch ~ [-0.3, 0.3], yaw ~ [0,2pi]
Eigen::Vector3d eulerAnglesRates(-k_roll * sin(t) , k_pitch * cos(t) , K); // euler angles 的导数
// Eigen::Vector3d eulerAngles(0.0,0.0, K*t ); // roll ~ 0, pitch ~ 0, yaw ~ [0,2pi]
// Eigen::Vector3d eulerAnglesRates(0.,0. , K); // euler angles 的导数
Eigen::Matrix3d Rwb = euler2Rotation(eulerAngles); // body frame to world frame
Eigen::Vector3d imu_gyro = eulerRates2bodyRates(eulerAngles) * eulerAnglesRates; // euler rates trans to body gyro p44:惯性系下欧拉角速度转到body坐标系下
Eigen::Vector3d gn (0,0,-9.81); // gravity in navigation frame(ENU) ENU (0,0,-9.81) NED(0,0,9,81)
Eigen::Vector3d imu_acc = Rwb.transpose() * ( ddp - gn ); // Rbw * Rwn * gn = gs
data.imu_gyro = imu_gyro;
data.imu_acc = imu_acc;
data.Rwb = Rwb;
data.twb = position;
data.imu_velocity = dp;
data.timestamp = t;
return data;
}
5. 运动模型的离散积分
- 欧拉法
/// imu 动力学模型 欧拉积分
Eigen::Vector3d acc_w = Qwb * (imupose.imu_acc) + gw; // aw = Rwb * ( acc_body - acc_bias ) + gw
Qwb = Qwb * dq;
Vw = Vw + acc_w * dt;
Pwb = Pwb + Vw * dt + 0.5 * dt * dt * acc_w;
- 中值法
MotionData imupose = imudata[i];
MotionData imupose_ = imudata[i-1];
//delta_q = [1 , 1/2 * thetax , 1/2 * theta_y, 1/2 * theta_z]
Eigen::Quaterniond dq;
Eigen::Vector3d dtheta_half = 1.0/2.0* (imupose.imu_gyro + imupose_.imu_gyro) * dt /2.0;
// Eigen::Vector3d dtheta_half = (imupose.imu_gyro + imudata[i-1].imu_gyro)/2 * dt /2.0;
dq.w() = 1;
dq.x() = dtheta_half.x();
dq.y() = dtheta_half.y();
dq.z() = dtheta_half.z();
/// 中值积分
Eigen::Vector3d acc_w = (Qwb * (imupose_.imu_acc) + gw + Qwb*dq * (imupose.imu_acc) + gw )/2; // aw = Rwb * ( acc_body - acc_bias ) + gw
Qwb = Qwb * dq;
Vw = Vw + acc_w * dt;
Pwb = Pwb + Vw * dt + 0.5 * dt * dt * acc_w;