欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

爬虫中的Scrapy框架

程序员文章站 2022-05-07 23:07:58
...

Scrapy 框架

  • Scrapy是用纯Python实现一个为了爬取网站数据、提取结构性数据而编写的应用框架,用途非常广泛。
  • 框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片,非常之方便。
  • Scrapy 使用了 Twisted['twɪstɪd](其主要对手是Tornado)异步网络框架来处理网络通讯,可以加快我们的下载速度,不用自己去实现异步框架,并且包含了各种中间件接口,可以灵活的完成各种需求。

Scrapy架构图(绿线是数据流向):

  • Scrapy Engine(引擎): 负责SpiderItemPipelineDownloaderScheduler中间的通讯,信号、数据传递等。
  • Scheduler(调度器): 它负责接受引擎发送过来的Request请求,并按照一定的方式进行整理排列,入队,当引擎需要时,交还给引擎
  • Downloader(下载器):负责下载Scrapy Engine(引擎)发送的所有Requests请求,并将其获取到的Responses交还给Scrapy Engine(引擎),由引擎交给Spider来处理,
  • Spider(爬虫):它负责处理所有Responses,从中分析提取数据,获取Item字段需要的数据,并将需要跟进的URL提交给引擎,再次进入Scheduler(调度器)
  • Item Pipeline(管道):它负责处理Spider中获取到的Item,并进行进行后期处理(详细分析、过滤、存储等)的地方.
  • Downloader Middlewares(下载中间件):你可以当作是一个可以自定义扩展下载功能的组件。
  • Spider Middlewares(Spider中间件):你可以理解为是一个可以自定扩展和操作引擎Spider中间通信的功能组件(比如进入Spider的Responses;和从Spider出去的Requests)

Scrapy的运作流程

代码写好,程序开始运行…

  1. 引擎:Hi!Spider, 你要处理哪一个网站?
  2. Spider:老大要我处理xxxx.com。
  3. 引擎:你把第一个需要处理的URL给我吧。
  4. Spider:给你,第一个URL是xxxxxxx.com。
  5. 引擎:Hi!调度器,我这有request请求你帮我排序入队一下。
  6. 调度器:好的,正在处理你等一下。
  7. 引擎:Hi!调度器,把你处理好的request请求给我。
  8. 调度器:给你,这是我处理好的request
  9. 引擎:Hi!下载器,你按照老大的下载中间件的设置帮我下载一下这个request请求
  10. 下载器:好的!给你,这是下载好的东西。(如果失败:sorry,这个request下载失败了。然后引擎告诉调度器,这个request下载失败了,你记录一下,我们待会儿再下载)
  11. 引擎:Hi!Spider,这是下载好的东西,并且已经按照老大的下载中间件处理过了,你自己处理一***意!这儿responses默认是交给def parse()这个函数处理的)
  12. Spider:(处理完毕数据之后对于需要跟进的URL),Hi!引擎,我这里有两个结果,这个是我需要跟进的URL,还有这个是我获取到的Item数据。
  13. 引擎:Hi !管道 我这儿有个item你帮我处理一下!调度器!这是需要跟进URL你帮我处理下。然后从第四步开始循环,直到获取完老大需要全部信息。
  14. 管道``调度器:好的,现在就做!

注意:只有当调度器没有request需要处理时,整个程序才会停止。(对于下载失败的URL,Scrapy也会重新下载。)

制作 Scrapy 爬虫 一共需要4步:

  • 新建项目 (scrapy startproject xxx):新建一个新的爬虫项目
  • 明确目标 (编写items.py):明确你想要抓取的目标
  • 制作爬虫 (spiders/xxspider.py):制作爬虫开始爬取网页
  • 存储内容 (pipelines.py):设计管道存储爬取内容

————————————————————————————————————————————————————————

Scrapy的安装介绍

Scrapy框架官方网址:http://doc.scrapy.org/en/latest

Scrapy中文维护站点:http://scrapy-chs.readthedocs.io/zh_CN/latest/index.html

Windows 安装方式

  • Python 2 / 3
  • 升级pip版本:pip install --upgrade pip
  • 通过pip 安装 Scrapy 框架pip install Scrapy

Ubuntu 需要9.10或以上版本安装方式

  • Python 2 / 3
  • 安装非Python的依赖 sudo apt-get install python-dev python-pip libxml2-dev libxslt1-dev zlib1g-dev libffi-dev libssl-dev
  • 通过pip 安装 Scrapy 框架 sudo pip install scrapy

安装后,只要在命令终端输入 scrapy,提示类似以下结果,代表已经安装成功

具体Scrapy安装流程参考:http://doc.scrapy.org/en/latest/intro/install.html#intro-install-platform-notes 里面有各个平台的安装方法

——————————————————————————————————————————————————

入门案例

学习目标

  • 创建一个Scrapy项目
  • 定义提取的结构化数据(Item)
  • 编写爬取网站的 Spider 并提取出结构化数据(Item)
  • 编写 Item Pipelines 来存储提取到的Item(即结构化数据)

一. 新建项目(scrapy startproject)

  • 在开始爬取之前,必须创建一个新的Scrapy项目。进入自定义的项目目录中,运行下列命令:
scrapy startproject m
  • 其中, myspider 为项目名称,可以看到将会创建一个 myspider 文件夹

下面来简单介绍一下各个主要文件的作用:

scrapy.cfg :项目的配置文件

mySpider/ :项目的Python模块,将会从这里引用代码

mySpider/items.py :项目的目标文件

mySpider/pipelines.py :项目的管道文件

mySpider/settings.py :项目的设置文件

mySpider/spiders/ :存储爬虫代码目录

二、明确目标(mySpider/items.py)

我们打算抓取:http://movie.mtime.com/boxoffice/#world/weekend 网站里的发布时间,标题,观看人数。

  1. 打开mySpider目录下的items.py
  2. Item 定义结构化数据字段,用来保存爬取到的数据,有点像Python中的dict,但是提供了一些额外的保护减少错误。
  3. 可以通过创建一个 scrapy.Item 类, 并且定义类型为 scrapy.Field的类属性来定义一个Item(可以理解成类似于ORM的映射关系)。
  4. 接下来,创建一个MyspiderItem类,和构建item模型(model)。
# items.py
import scrapy


class MyspiderItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    # 标题
    product_little = scrapy.Field()
    # 类型
    product_type = scrapy.Field()
    # 观看人数
    see_count = scrapy.Field()
    # 点赞人数
    zan_count = scrapy.Field()

三、制作爬虫 (spiders/new_chang.py)

爬虫功能要分两步:

1. 爬数据

  • 在当前目录下输入命令,将在mySpider/spider目录下创建一个名为xin_chang的爬虫,并指定爬取域的范围:
scrapy genspider new_chang "xinpianchang.com"
  • 打开 mySpider/spider目录里的 new_chang.py,默认增加了下列代码:
import scrapy

class NewChangSpiderr(scrapy.Spider):
    # 必须品
    name = "new_chang"
    # 非必需品
    # allowed_domains = ["xinpianchang.com"]
    # 必须有
    start_urls = (
        'https://www.xinpianchang.com/channel/index/sort-like',
    )

    def parse(self, response):
        pass

其实也可以由我们自行创建new_chang.py并编写上面的代码,只不过使用命令可以免去编写固定代码的麻烦

要建立一个Spider, 你必须用scrapy.Spider类创建一个子类,并确定了三个强制的属性 和 一个方法。

  • name = "" :这个爬虫的识别名称,必须是唯一的,在不同的爬虫必须定义不同的名字。
  • allowed_domains = [] 是搜索的域名范围,也就是爬虫的约束区域,规定爬虫只爬取这个域名下的网页,不存在的URL会被忽略。
  • start_urls = () :爬取的URL元祖/列表。爬虫从这里开始抓取数据,所以,第一次下载的数据将会从这些urls开始。其他子URL将会从这些起始URL中继承性生成。
  • parse(self, response) :解析的方法,每个初始URL完成下载后将被调用,调用的时候传入从每一个URL传回的Response对象来作为唯一参数,主要作用如下:
    1. 负责解析返回的网页数据(response.body),提取结构化数据(生成item)
    2. 生成需要下一页的URL请求。

将start_urls的值修改为需要爬取的第一个url

start_urls = ("http://www.baidu.cn/channel/teacher.shtml",)

修改parse()方法

def parse(self, response):
    with open("new.html", "w") as f:
        f.write(response.text)

然后运行一下看看,在mySpider目录下执行:

scrapy crawl new_chang

是的,就是 new_chang,看上面代码,它是NewChangSpider 类的 name 属性,也就是使用 scrapy genspider命令的爬虫名。

一个Scrapy爬虫项目里,可以存在多个爬虫。各个爬虫在执行时,就是按照 name 属性来区分。

运行之后,如果打印的日志出现 [scrapy] INFO: Spider closed (finished),代表执行完成。 之后当前文件夹中就出现了一个new.html 文件,里面就是我们刚刚要爬取的网页的全部源代码信息。

# 注意,Python2.x默认编码环境是ASCII,当和取回的数据编码格式不一致时,可能会造成乱码;
# 我们可以指定保存内容的编码格式,一般情况下,我们可以在代码最上方添加:

    import sys
    reload(sys)
    sys.setdefaultencoding("utf-8")

# 这三行代码是Python2.x里解决中文编码的万能钥匙,经过这么多年的吐槽后Python3学乖了,默认编码是Unicode了...

2. 取数据

  • 爬取整个网页完毕,接下来的就是的取过程了,首先观察页面源码:
<a href="javascript:;">
  <p class="fs_14 fw_600 c_b_3 line-hide-1">晴天,海边</p>
  </a>  
<div class="new-cate">
  <span class="fs_12 fw_300 c_b_9">MV</span>
  <span class="i-icon v-center"></span>
  <span class="fs_12 fw_300 c_b_9">
              纪录 - 旅行             </span>
  </div>
<div class="video-view fs_12 fw_300 c_b_9">
    <span class="fw_300 icon-play-volume">1.5w</span>
  <span class="fw_300 c_b_9 icon-like">151</span>
  </div>

是不是一目了然?直接上XPath开始提取数据吧。

  • 我们之前在mySpider/items.py 里定义了一个MyspiderItem类。 这里引入进来
from ..items import MyspiderItem

  • 然后将我们得到的数据封装到一个 MyspiderItem 对象中,可以保存每个片场的属性:
# -*- coding: utf-8 -*-
import scrapy

from ..items import MyspiderItem

class NewChangSpider(scrapy.Spider):
    name = 'new_chang'
    allowed_domains = ['xinpianchang.com']
    start_urls = ['https://www.xinpianchang.com/channel/index/sort-like']

    def parse(self, response):
        items = []

        for eatch in response.xpath('//li[@class="enter-filmplay"]//div[@class="video-con"]'):
            
            # 将我们得到的数据封装到一个 `MyspiderItem` 对象
            item = MyspiderItem()

            # extract()方法返回的都是unicode字符串
            product_little = eatch.xpath('.//a/p/text()').extract()
            print("*" * 100)
           
            product_type = eatch.xpath('.//div[@class="new-cate"]//span/text()').extract()

            see_count = eatch.xpath('.//div[@class="video-view fs_12 fw_300 c_b_9"]/span/text()')[0].extract()
            zan_count = eatch.xpath('.//div[@class="video-view fs_12 fw_300 c_b_9"]/span/text()')[1].extract()
            print("see_count", zan_count)

            # xpath返回的是包含元素的列表
            item["product_little"] = product_little
            item["product_type"] = product_type
            item["see_count"] = see_count
            item["zan_count"] = zan_count
            items.append(item)
        return items


  • 我们暂时先不处理管道,后面会详细介绍。

3.保存数据

scrapy保存信息的最简单的方法主要有四种,-o 输出指定格式的文件,,命令如下:

# json格式,默认为Unicode编码
scrapy crawl new_chang -o new.json

# json lines格式,默认为Unicode编码
scrapy crawl new_chang -o new.jsonl

# csv 逗号表达式,可用Excel打开
scrapy crawl new_chang -o new.csv

# xml格式
scrapy crawl new_chang -o new.xml


思考

如果将代码改成下面形式,结果完全一样。

# -*- coding: utf-8 -*-
import scrapy
from ..items import MyspiderItem

class NewChangSpider(scrapy.Spider):
    name = 'new_chang'
    allowed_domains = ['xinpianchang.com']
    start_urls = ['https://www.xinpianchang.com/channel/index/sort-like']

    def parse(self, response):
        items = []

        # 
        for eatch in response.xpath('//li[@class="enter-filmplay"]//div[@class="video-con"]')[:2]:
            
            # 将我们得到的数据封装到一个 `MyspiderItem` 对象
            item = MyspiderItem()

            # extract()方法返回的都是unicode字符串
            product_little = eatch.xpath('.//a/p/text()').extract()
            print("*" * 100)
            # 
            product_type = eatch.xpath('.//div[@class="new-cate"]//span/text()').extract()

            see_count = eatch.xpath('.//div[@class="video-view fs_12 fw_300 c_b_9"]/span/text()')[0].extract()
            zan_count = eatch.xpath('.//div[@class="video-view fs_12 fw_300 c_b_9"]/span/text()')[1].extract()
            print("see_count", zan_count)

            # xpath返回的是包含元素的列表
            item["product_little"] = product_little
            item["product_type"] = product_type
            item["see_count"] = see_count
            item["zan_count"] = zan_count
        
        
          	yield item

Scrapy Shell

Scrapy终端是一个交互终端,我们可以在未启动spider的情况下尝试及调试代码,也可以用来测试XPath或CSS表达式,查看他们的工作方式,方便我们爬取的网页中提取的数据。

如果安装了 IPython ,Scrapy终端将使用 IPython (替代标准Python终端)。 IPython 终端与其他相比更为强大,提供智能的自动补全,高亮输出,及其他特性。(推荐安装IPython)

启动Scrapy Shell

进入项目的根目录,执行下列命令来启动shell:

scrapy shell "https://www.xinpianchang.com/channel/index/sort-like"

Scrapy Shell根据下载的页面会自动创建一些方便使用的对象,例如 Response 对象,以及 Selector 对象 (对HTML及XML内容)

  • 当shell载入后,将得到一个包含response数据的本地 response 变量,输入 response.body将输出response的包体,输出 response.headers 可以看到response的包头。
  • 输入 response.selector 时, 将获取到一个response 初始化的类 Selector 的对象,此时可以通过使用 response.selector.xpath()response.selector.css() 来对 response 进行查询。
  • Scrapy也提供了一些快捷方式, 例如 response.xpath()response.css()同样可以生效(如之前的案例)。

Selectors选择器

Scrapy Selectors 内置 XPath 和 CSS Selector 表达式机制

Selector有四个基本的方法,最常用的还是xpath:

  • xpath(): 传入xpath表达式,返回该表达式所对应的所有节点的selector list列表
  • extract(): 序列化该节点为Unicode字符串并返回list
  • css(): 传入CSS表达式,返回该表达式所对应的所有节点的selector list列表,语法同 BeautifulSoup4
  • re(): 根据传入的正则表达式对数据进行提取,返回Unicode字符串list列表

XPath表达式的例子及对应的含义:

/html/head/title: 选择<HTML>文档中 <head> 标签内的 <title> 元素
/html/head/title/text(): 选择上面提到的 <title> 元素的文字
//td: 选择所有的 <td> 元素
//div[@class="mine"]: 选择所有具有 class="mine" 属性的 div 元素

以后做数据提取的时候,可以把现在Scrapy Shell中测试,测试通过后再应用到代码中。

当然Scrapy Shell作用不仅仅如此,但是不属于我们课程重点,不做详细介绍。

官方文档:http://scrapy-chs.readthedocs.io/zh_CN/latest/topics/shell.html

——————————————————————————————————————————————————

Item Pipeline

当Item在Spider中被收集之后,它将会被传递到Item Pipeline,这些Item Pipeline组件按定义的顺序处理Item。

每个Item Pipeline都是实现了简单方法的Python类,比如决定此Item是丢弃而存储。以下是item pipeline的一些典型应用:

  • 验证爬取的数据(检查item包含某些字段,比如说name字段)
  • 查重(并丢弃)
  • 将爬取结果保存到文件或者数据库中

编写item pipeline

编写item pipeline很简单,item pipiline组件是一个独立的Python类,其中process_item()方法必须实现:

import something

class SomethingPipeline(object):
    def __init__(self):    
        # 可选实现,做参数初始化等
        # doing something

    def process_item(self, item, spider):
        # item (Item 对象) – 被爬取的item
        # spider (Spider 对象) – 爬取该item的spider
        # 这个方法必须实现,每个item pipeline组件都需要调用该方法,
        # 这个方法必须返回一个 Item 对象,被丢弃的item将不会被之后的pipeline组件所处理。
        return item

    def open_spider(self, spider):
        # spider (Spider 对象) – 被开启的spider
        # 可选实现,当spider被开启时,这个方法被调用。

    def close_spider(self, spider):
        # spider (Spider 对象) – 被关闭的spider
        # 可选实现,当spider被关闭时,这个方法被调用

完善之前的案例:

item写入JSON文件

以下pipeline将所有(从所有’spider’中)爬取到的item,存储到一个独立地items.json 文件,每行包含一个序列化为’JSON’格式的’item’。

打开 pipelines.py 文件,写入下面代码:

import json


class MySpiderJsonPipeline(object):

    def __init__(self):
        self.file = open('new.json', 'w')

    def process_item(self, item, spider):
        content = json.dumps(dict(item), ensure_ascii=False) + "\n"
        self.file.write(content)
        return item

    def close_spider(self, spider):
        self.file.close()

启用一个Item Pipeline组件

为了启用Item Pipeline组件,必须将它的类添加到 settings.py文件ITEM_PIPELINES 配置,就像下面这个例子:

ITEM_PIPELINES = {
   # 'mySpider.pipelines.MyspiderPipeline': 300,
   'mySpider.pipelines.MySpiderJsonPipeline': 300,
}

分配给每个类的整型值,确定了他们运行的顺序,item按数字从低到高的顺序,通过pipeline,通常将这些数字定义在0-1000范围内(0-1000随意设置,数值越低,组件的优先级越高)

重新启动爬虫

将parse()方法改为4.2中最后思考中的代码,然后执行下面的命令:

scrapy crawl new_chang

查看当前目录是否生成new.json

——————————————————————————————————————————————————

Spider

Spider类定义了如何爬取某个(或某些)网站。包括了爬取的动作(例如:是否跟进链接)以及如何从网页的内容中提取结构化数据(爬取item)。 换句话说,Spider就是您定义爬取的动作及分析某个网页(或者是有些网页)的地方。

class scrapy.Spider是最基本的类,所有编写的爬虫必须继承这个类。

主要用到的函数及调用顺序为:

__init__() : 初始化爬虫名字和start_urls列表

start_requests() 调用make_requests_from url():生成Requests对象交给Scrapy下载并返回response

parse() : 解析response,并返回Item或Requests(需指定回调函数)。Item传给Item pipline持久化 , 而Requests交由Scrapy下载,并由指定的回调函数处理(默认parse()),一直进行循环,直到处理完所有的数据为止。

源码参考

#所有爬虫的基类,用户定义的爬虫必须从这个类继承
class Spider(object_ref):

    #定义spider名字的字符串(string)。spider的名字定义了Scrapy如何定位(并初始化)spider,所以其必须是唯一的。
    #name是spider最重要的属性,而且是必须的。
    #一般做法是以该网站(domain)(加或不加 后缀 )来命名spider。 例如,如果spider爬取 mywebsite.com ,该spider通常会被命名为 mywebsite
    name = None

    #初始化,提取爬虫名字,start_ruls
    def __init__(self, name=None, **kwargs):
        if name is not None:
            self.name = name
        # 如果爬虫没有名字,中断后续操作则报错
        elif not getattr(self, 'name', None):
            raise ValueError("%s must have a name" % type(self).__name__)

        # python 对象或类型通过内置成员__dict__来存储成员信息
        self.__dict__.update(kwargs)

        #URL列表。当没有指定的URL时,spider将从该列表中开始进行爬取。 因此,第一个被获取到的页面的URL将是该列表之一。 后续的URL将会从获取到的数据中提取。
        if not hasattr(self, 'start_urls'):
            self.start_urls = []

    # 打印Scrapy执行后的log信息
    def log(self, message, level=log.DEBUG, **kw):
        log.msg(message, spider=self, level=level, **kw)

    # 判断对象object的属性是否存在,不存在做断言处理
    def set_crawler(self, crawler):
        assert not hasattr(self, '_crawler'), "Spider already bounded to %s" % crawler
        self._crawler = crawler

    @property
    def crawler(self):
        assert hasattr(self, '_crawler'), "Spider not bounded to any crawler"
        return self._crawler

    @property
    def settings(self):
        return self.crawler.settings

    #该方法将读取start_urls内的地址,并为每一个地址生成一个Request对象,交给Scrapy下载并返回Response
    #该方法仅调用一次
    def start_requests(self):
        for url in self.start_urls:
            yield self.make_requests_from_url(url)

    #start_requests()中调用,实际生成Request的函数。
    #Request对象默认的回调函数为parse(),提交的方式为get
    def make_requests_from_url(self, url):
        return Request(url, dont_filter=True)

    #默认的Request对象回调函数,处理返回的response。
    #生成Item或者Request对象。用户必须实现这个类
    def parse(self, response):
        raise NotImplementedError

    @classmethod
    def handles_request(cls, request):
        return url_is_from_spider(request.url, cls)

    def __str__(self):
        return "<%s %r at 0x%0x>" % (type(self).__name__, self.name, id(self))

    __repr__ = __str__

主要属性和方法

  • name

    定义spider名字的字符串。

    例如,如果spider爬取 mywebsite.com ,该spider通常会被命名为 mywebsite

  • allowed_domains

    包含了spider允许爬取的域名(domain)的列表,可选。

  • start_urls

    初始URL元祖/列表。当没有制定特定的URL时,spider将从该列表中开始进行爬取。

  • start_requests(self)

    该方法必须返回一个可迭代对象(iterable)。该对象包含了spider用于爬取(默认实现是使用 start_urls 的url)的第一个Request。

    当spider启动爬取并且未指定start_urls时,该方法被调用。

  • parse(self, response)

    当请求url返回网页没有指定回调函数时,默认的Request对象回调函数。用来处理网页返回的response,以及生成Item或者Request对象。

  • log(self, message[, level, component])

    使用 scrapy.log.msg() 方法记录(log)message。 更多数据请参见 logging

案例:新片场自动翻页采集

  • 创建一个新的爬虫:
scrapy genspider new_chang "xinpianchang.com"

  • 编写items.py

获取片场信息

class TencentItem(scrapy.Item):
    name = scrapy.Field()
    detailLink = scrapy.Field()
    positionInfo = scrapy.Field()
    peopleNumber = scrapy.Field()
    workLocation = scrapy.Field()
    publishTime = scrapy.Field()

  • 编写new_chang.py
# -*- coding: utf-8 -*-
import scrapy

from ..items import MyspiderItem

class NewChangSpider(scrapy.Spider):
    name = 'new_chang'
    allowed_domains = ['xinpianchang.com']
    base_url = "https://www.xinpianchang.com/channel/index/type-/sort-like/duration_type-0/resolution_type-/page-"
    page = 0
    start_urls = [base_url+ str(page)]

    def parse(self, response):
        items = []

        #
        for eatch in response.xpath('//li[@class="enter-filmplay"]//div[@class="video-con"]')[:2]:

            # 将我们得到的数据封装到一个 `MyspiderItem` 对象
            item = MyspiderItem()

            # extract()方法返回的都是unicode字符串
            product_little = eatch.xpath('.//a/p/text()').extract()
            print("*" * 100)
            #
            product_type = eatch.xpath('.//div[@class="new-cate"]//span/text()').extract()

            see_count = eatch.xpath('.//div[@class="video-view fs_12 fw_300 c_b_9"]/span/text()')[0].extract()
            zan_count = eatch.xpath('.//div[@class="video-view fs_12 fw_300 c_b_9"]/span/text()')[1].extract()
            print("see_count", zan_count)

            # xpath返回的是包含元素的列表
            item["product_little"] = product_little
            item["product_type"] = product_type
            item["see_count"] = see_count
            item["zan_count"] = zan_count
            # 返回item给引擎-管道处理
            yield item

        if self.page <= 20:
            self.page += 1
            # 返回request给调度器-下载器-spider.parse(response)
            # url 表示发送请求的url地址
            # callback 表示该请求返回的响应,由指定的函数解析(回调函数)
            yield scrapy.Request(url=self.base_url + str(self.page), callback=self.parse)
            # yield scrapy.Request(url=self.start_urls, callback=self.parse)


  • 编写pipeline.py文件
import json


class MySpiderJsonPipeline(object):

    def __init__(self):
        self.file = open('new.json', 'w')

    def process_item(self, item, spider):
        content = json.dumps(dict(item), ensure_ascii=False) + "\n"
        self.file.write(content)
        return item

    def close_spider(self, spider):
        self.file.close()

  • 在 setting.py 里设置ITEM_PIPELINES
ITEM_PIPELINES = {
   # 'mySpider.pipelines.MyspiderPipeline': 300,
   'mySpider.pipelines.MySpiderJsonPipeline': 300,
}

  • 执行爬虫:scrapy crawl new_chang

思考

请思考 parse()方法的工作机制:

  1. 因为使用的yield,而不是return。parse函数将会被当做一个生成器使用。scrapy会逐一获取parse方法中生成的结果,并判断该结果是一个什么样的类型;
  2. 如果是request则加入爬取队列,如果是item类型则使用pipeline处理,其他类型则返回错误信息。
  3. scrapy取到第一部分的request不会立马就去发送这个request,只是把这个request放到队列里,然后接着从生成器里获取;
  4. 取尽第一部分的request,然后再获取第二部分的item,取到item了,就会放到对应的pipeline里处理;
  5. parse()方法作为回调函数(callback)赋值给了Request,指定parse()方法来处理这些请求 scrapy.Request(url, callback=self.parse)
  6. Request对象经过调度,执行生成 scrapy.http.response()的响应对象,并送回给parse()方法,直到调度器中没有Request(递归的思路)
  7. 取尽之后,parse()工作结束,引擎再根据队列和pipelines中的内容去执行相应的操作;
  8. 程序在取得各个页面的items前,会先处理完之前所有的request队列里的请求,然后再提取items。
  9. 这一切的一切,Scrapy引擎和调度器将负责到底。