二叉搜索树
程序员文章站
2022-05-07 08:01:42
...
二叉搜索树又称二叉排序树,它或者是一颗空树,或者具有以下性质的二叉树:
若它的左子树不为空,则左子树上所有结点的值都小于根结点的值;
若它的右子树不为空,则右子树上所有结点的值都大于根结点的值;
它的左右子树也分别为二叉搜索树。
主要介绍删除:
首先查找元素是否存在二叉搜索树中,如果不存在,则返回,否则要删除的结点可能分为下面四种情况:
a:要删除的结点左右结点都为空;
b:只有左孩子有结点;
c:只有右孩子有结点;
d:左右结点都不为空。
可以将a归到b或c。
删除方法:
a:直接删除该结点;
b:删除该结点且使被删除结点的双亲结点指向被删除结点的左孩子结点;
c:删除该结点且使被删除结点的双亲结点指向被删除结点的右孩子结点;
d:替换删除法:在该右子树中找到最后一个最左结点,将值和删除结点进行替换,在删除最左结点。
代码如下:
BinarySearchTree.h:
#pragma once
typedef int BSTreeDatatype;
typedef struct BSTreeNode
{
struct BSTreeNode *left;
struct BSTreeNode *right;
BSTreeDatatype data;
}BSTreeNode;
int BSTreeInsert(BSTreeNode **pptree, BSTreeDatatype x);//插入数据
BSTreeNode *BuyBSTreeNode(BSTreeDatatype x);//创建结点
void BSTreeInOrder(BSTreeNode *ptree);//中序遍历
const BSTreeNode *FindBSTreeNode(BSTreeNode *ptree, BSTreeDatatype x);//查找元素
int BSTreeNodeRemove(BSTreeNode **pptree, BSTreeDatatype x);//删除
int BSTreeInsertR(BSTreeNode **pptree, BSTreeDatatype x);//递归插入
const BSTreeNode * BSTreeFindNodeR(BSTreeNode *pptree, BSTreeDatatype x);//递归查找
int BSTreeRemoveR(BSTreeNode **pptree, BSTreeDatatype x);//递归删除
递归删除画图如下:
BinarySearchTree.c
#include"BinarySearchTree.h"
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
int main()
{
BSTreeNode *tree = NULL;
BSTreeInsert(&tree, 19);
BSTreeInsert(&tree, 15);
BSTreeInsert(&tree, 30);
BSTreeInsert(&tree, 12);
BSTreeInsert(&tree, 17);
BSTreeInsert(&tree, 11);
BSTreeInsert(&tree, 16);
BSTreeInsert(&tree, 18);
BSTreeInsert(&tree, 21);
BSTreeInsert(&tree, 34);
BSTreeInsert(&tree, 25);
//BSTreeInsertR(&tree, 19);
//BSTreeInsertR(&tree, 15);
//BSTreeInsertR(&tree, 30);
//BSTreeInsertR(&tree, 12);
//BSTreeInsertR(&tree, 17);
//BSTreeInsertR(&tree, 11);
//BSTreeInsertR(&tree, 16);
//BSTreeInsertR(&tree, 18);
//BSTreeInsertR(&tree, 21);
//BSTreeInsertR(&tree, 34);
//BSTreeInOrder(tree);//中序遍历
//printf("\n");
/* printf("%d\n", BSTreeFindNodeR(tree, 17)->data);
printf("%d\n", BSTreeFindNodeR(tree, 19)->data);
printf("%d\n", BSTreeFindNodeR(tree, 11)->data);
printf("%d\n", BSTreeFindNodeR(tree, 17)->data);
printf("%d\n", BSTreeFindNodeR(tree, 18)->data);
printf("%d\n", BSTreeFindNodeR(tree, 30)->data);
printf("%d\n", BSTreeFindNodeR(tree, 34)->data)*/;
//BSTreeRemoveR(&tree, 19 );//删除
//BSTreeRemoveR(&tree, 15);//删除
//BSTreeRemoveR(&tree, 30);//删除
//BSTreeRemoveR(&tree, 12);//删除
//BSTreeRemoveR(&tree, 17);//删除
//BSTreeRemoveR(&tree, 11);//删除
//BSTreeRemoveR(&tree, 16);//删除
//BSTreeRemoveR(&tree, 18);//删除
//BSTreeRemoveR(&tree, 21);//删除
//BSTreeRemoveR(&tree, 34);//删除
//BSTreeInOrder(tree);//中序遍历
//printf("\n");
//printf("%d\n", FindBSTreeNode(tree, 17)->data);
BSTreeNodeRemove(&tree, 19);//删除
BSTreeNodeRemove(&tree, 15);//删除
BSTreeNodeRemove(&tree, 30);//删除
BSTreeNodeRemove(&tree, 12);//删除
BSTreeNodeRemove(&tree, 17);//删除
BSTreeNodeRemove(&tree, 11);//删除
BSTreeNodeRemove(&tree, 16);//删除
BSTreeNodeRemove(&tree, 18);//删除
BSTreeNodeRemove(&tree, 21);//删除
BSTreeNodeRemove(&tree, 34);//删除
BSTreeNodeRemove(&tree, 25);//删除
BSTreeInOrder(tree);//中序遍历
system("pause");
return 0;
}
BSTreeNode *BuyBSTreeNode(BSTreeDatatype x)//创建结点
{
BSTreeNode *newnode = (BSTreeNode *)malloc(sizeof(BSTreeNode));
if (newnode == NULL)
return NULL;
else
{
newnode->data = x;
newnode->left = NULL;
newnode->right = NULL;
return newnode;
}
}
int BSTreeInsert(BSTreeNode **pptree, BSTreeDatatype x)//插入数据
{
BSTreeNode *node = BuyBSTreeNode(x);
BSTreeNode *parent = NULL, *cur = *pptree;
if (*pptree == NULL)
{
*pptree = node;
return 0;
}
while (cur)
{
if (cur->data < x)
{
parent = cur;
cur = cur->right;
}
else if (cur->data > x)
{
parent = cur;
cur = cur->left;
}
else
return -1;//插入元素以存在,则不进行插入
}
if (parent->data > x)
parent->left = node;
else
parent->right = node;
return 0;
}
void BSTreeInOrder(BSTreeNode *ptree)//中序遍历
{
if (ptree == NULL)
return;
BSTreeInOrder(ptree->left);
printf("%d ", ptree->data);
BSTreeInOrder(ptree->right);
}
const BSTreeNode *FindBSTreeNode(BSTreeNode *ptree, BSTreeDatatype x)//查找元素
{
assert(ptree);
BSTreeNode *cur = ptree;
while (cur)
{
if (cur->data < x)
cur = cur->right;
else if (cur->data > x)
cur = cur->left;
else
return cur;
}
return NULL;
}
int BSTreeNodeRemove(BSTreeNode **pptree, BSTreeDatatype x)//删除
{
assert(*pptree);
BSTreeNode *cur = *pptree, *parent = *pptree;
while (cur)//找到删除结点
{
if (cur->data < x)
{
parent = cur;
cur = cur->right;
}
else if (cur->data > x)
{
parent = cur;
cur = cur->left;
}
else
break;
}
if (cur->left == NULL)//左为空
{
if (parent->data < x)
parent->right = cur->right;
else if (parent->data>x)
parent->left = cur->right;
else
{
BSTreeNode *subleft, *parentnode = cur;
subleft = cur->right;
if (subleft)
{
while (subleft->left)
{
parentnode = subleft;
subleft = subleft->left;
}
cur->data = subleft->data;
if (parentnode->right == subleft)
parentnode->right = subleft->right;
else
parentnode->left = subleft->right;
free(subleft);
subleft = NULL;
}
else
{ //说明*pptree是根结点,而且只有这一个根结点
*pptree = NULL;
}
}
return 0;
}
if (cur->right == NULL)//右为空
{
if (parent->data < x)
parent->right = cur->left;
else if (parent->data>x)
parent->left = cur->left;
else
{
//说明删除根结点
BSTreeNode *subright, *parentnode = cur;
subright = cur->left;
if (subright)
{
while (subright->right)
{
parentnode = subright;
subright = subright->right;
}
cur->data = subright->data;
if (parentnode->left == subright)
parentnode->left = subright->left;
else
parentnode->right = subright->left;
free(subright);
subright = NULL;
}
}
return 0;
}
//左右都不为空
BSTreeNode *subleft, *parentnode = cur;
subleft = cur->right;
while (subleft->left)
{
parentnode = subleft;
subleft = subleft->left;
}
cur->data = subleft->data;
if (parentnode->left == subleft)
parentnode->left = subleft->right;
else
parentnode->right = subleft->right;
free(subleft);
return 0;
}
int BSTreeInsertR(BSTreeNode **pptree, BSTreeDatatype x)//递归插入
{
BSTreeNode *newnode = BuyBSTreeNode(x);
if (*pptree == NULL)
{ //由于pptree是二级指针,解引用后就是上一个pptree->left或pptree->right
//具有天然的将父亲与孩子链接起来
*pptree = newnode;
return 0;
}
if ((*pptree)->data < x)
{
return BSTreeInsertR(&(*pptree)->right, x);
}
else if ((*pptree)->data > x)
{
return BSTreeInsertR(&(*pptree)->left, x);
}
else
return -1;
}
const BSTreeNode * BSTreeFindNodeR(BSTreeNode *pptree, BSTreeDatatype x)//递归查找
{
if (pptree == NULL)
return NULL;
if (pptree->data == x)
return pptree;
else if (pptree->data < x)
return BSTreeFindNodeR(pptree->right, x);
else
return BSTreeFindNodeR(pptree->left, x);
}
int BSTreeRemoveR(BSTreeNode **pptree, BSTreeDatatype x)//递归删除
{
if (*pptree == NULL)//是空证明没有该结点,直接返回
return -1;
if ((*pptree)->data < x)//在右子树里删除
return BSTreeRemoveR(&(*pptree)->right, x);//递归删除
else if ((*pptree)->data>x)//在左子树里删除
return BSTreeRemoveR(&(*pptree)->left, x);
else
{
BSTreeNode *del = *pptree;
//叶子结点可以涵盖在左为空或者右为空中
if ((*pptree)->left == NULL)//左为空
{
*pptree = (*pptree)->right;
free(del);
return 0;
}
else if ((*pptree)->right == NULL)//右为空
{
*pptree = (*pptree)->left;//利用二级指针解引用
free(del);
return 0;
}
else
{
BSTreeNode *subleft = (*pptree)->right;
while (subleft->left)
subleft = subleft->left;
(*pptree)->data = subleft->data;
//然后把subleft删除,参数里不能写成(subleft,subleft->data),
//因为subleft是局部变量
return BSTreeRemoveR(&(*pptree)->right, subleft->data);//递归删除
}
}
}
上一篇: 第三章