欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

双指针技巧总结

程序员文章站 2022-05-06 21:35:54
...

原文地址:双指针技巧总结
原文作者公众号:
双指针技巧总结

我把双指针技巧再分为两类,一类是 「快慢指针」 ,一类是 「左右指针」 。前者解决主要解决链表中的问题,比如典型的判定链表中是否包含环;后者主要解决数组(或者字符串)中的问题,比如二分查找。
双指针技巧总结

1. 快慢指针的常见算法

快慢指针中,快指针和慢指针都初始化指向链表的头结点 head,前进时快指针 fast 在前,慢指针 slow 在后,巧妙解决一些链表中的问题。

1.1 判断链表中是否含有环

这应该属于链表最基本的操作了,如果读者已经知道这个技巧,可以跳过。

单链表的特点是每个节点只知道下一个节点,所以一个指针的话无法判断链表中是否含有环的。

如果链表中不含环,那么这个指针最终会遇到空指针 null 表示链表到头了,这还好说,可以判断该链表不含环。

boolean hasCycle(ListNode head) {
    while (head != null)
        head = head.next;
    return false;
}

但是如果链表中含有环,那么这个指针就会陷入死循环,因为环形数组中没有 null 指针作为尾部节点。

经典解法就是用两个指针,一个跑得快,一个跑得慢。如果不含有环,跑得快的那个指针最终会遇到 null,说明链表不含环;如果含有环,快指针最终会超慢指针一圈,和慢指针相遇,说明链表含有环。

boolean hasCycle(ListNode head) {
    ListNode fast, slow;
    fast = slow = head;
    //注意这个循环条件!!!
    while (fast != null && fast.next != null) {
        fast = fast.next.next;
        slow = slow.next;

        if (fast == slow) return true;
    }
    return false;
}

注意上述的循环条件,它避免了fast指针的一些空值问题!!!

1.2 已知链表中含有环,返回这个环的起始位置

双指针技巧总结
这个问题一点都不困难,有点类似脑筋急转弯,先直接看代码:

ListNode detectCycle(ListNode head) {
    ListNode fast, slow;
    fast = slow = head;
    while (fast != null && fast.next != null) {
        fast = fast.next.next;
        slow = slow.next;
        if (fast == slow) break;
    }
    // 上面的代码类似 hasCycle 函数
    slow = head;
    while (slow != fast) {
        fast = fast.next;
        slow = slow.next;
    }
    return slow;
}

可以看到,当快慢指针相遇时,让其中任一个指针指向头节点,然后让它俩以相同速度前进,再次相遇时所在的节点位置就是环开始的位置。这是为什么呢?

第一次相遇时,假设慢指针 slow 走了 k 步,那么快指针 fast 一定走了 2k 步,也就是说比 slow 多走了 k 步。

双指针技巧总结
设相遇点距环的起点的距离为 m,那么环的起点距头结点 head 的距离为 k - m,也就是说如果从 head 前进 k - m 步就能到达环起点。

巧的是,如果从相遇点继续前进 k - m 步,也恰好到达环起点。
双指针技巧总结
所以,只要我们把快慢指针中的任一个重新指向 head,然后两个指针同速前进,k - m 步后就会相遇,相遇之处就是环的起点了。

⭐1.3 寻找链表的中点——链表归并排序

类似上面的思路,我们还可以让快指针一次前进两步,慢指针一次前进一步,当快指针到达链表尽头时,慢指针就处于链表的中间位置。

while (fast != null && fast.next != null) {
    fast = fast.next.next;
    slow = slow.next;
}
// slow 就在中间位置
return slow;

当链表的长度是奇数时,slow 恰巧停在中点位置;如果长度是偶数,slow 最终的位置是中间偏右:
双指针技巧总结
寻找链表中点的一个重要作用是对链表进行归并排序。

回想数组的归并排序:求中点索引递归地把数组二分,最后合并两个有序数组。对于链表,合并两个有序链表是很简单的,难点就在于二分。

但是现在你学会了找到链表的中点,就能实现链表的二分了。关于归并排序的具体内容本文就不具体展开了。

1.4 寻找链表的倒数第 k 个元素

我们的思路还是使用快慢指针,让快指针先走 k 步,然后快慢指针开始同速前进。这样当快指针走到链表末尾 null 时,慢指针所在的位置就是倒数第 k 个链表节点(为了简化,假设 k 不会超过链表长度):

ListNode slow, fast;
slow = fast = head;
while (k-- > 0) 
    fast = fast.next;

while (fast != null) {
    slow = slow.next;
    fast = fast.next;
}
return slow;

2. 左右指针的常用算法

左右指针在数组中实际是指两个索引,一般初始化为 left = 0, right = nums.length - 1

2.1 二分查找

前文「二分查找」有详细讲解,这里只写最简单的二分算法,旨在突出它的双指针特性:

int binarySearch(int[] nums, int target) {
    int left = 0; 
    int right = nums.length - 1;
    while(left <= right) {
        int mid = (right + left) / 2;
        if(nums[mid] == target)
            return mid; 
        else if (nums[mid] < target)
            left = mid + 1; 
        else if (nums[mid] > target)
            right = mid - 1;
    }
    return -1;
}

2.2 两数之和

直接看一道 LeetCode 题目吧:
双指针技巧总结
⭐⭐⭐⭐⭐只要数组有序,就应该想到双指针技巧。
这道题的解法有点类似二分查找,通过调节 left 和 right 可以调整 sum 的大小:

int[] twoSum(int[] nums, int target) {
    int left = 0, right = nums.length - 1;
    while (left < right) {
        int sum = nums[left] + nums[right];
        if (sum == target) {
            // 题目要求的索引是从 1 开始的
            return new int[]{left + 1, right + 1};
        } else if (sum < target) {
            left++; // 让 sum 大一点
        } else if (sum > target) {
            right--; // 让 sum 小一点
        }
    }
    return new int[]{-1, -1};
}

1.3 反转数组

void reverse(int[] nums) {
    int left = 0;
    int right = nums.length - 1;
    while (left < right) {
        // swap(nums[left], nums[right])
        int temp = nums[left];
        nums[left] = nums[right];
        nums[right] = temp;
        left++; right--;
    }
}

1.4 滑动窗口算法

这也许是双指针技巧的最高境界了,如果掌握了此算法,可以解决一大类子字符串匹配的问题,不过 「滑动窗口」 稍微比上述的这些算法复杂些。

幸运的是,这类算法是有框架模板的,而且这篇文章就讲解了「滑动窗口」算法模板,帮大家秒杀几道 LeetCode 子串匹配的问题。

题型训练

  1. ⭐LeetCode 15. 3Sum