欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Oracle表连接之哈希连接

程序员文章站 2022-05-06 18:54:27
...

Oracle Hash join 是一种非常高效的join 算法,主要以CPU(hash计算)和内存空间(创建hash table)为代价获得最大的效率。Hash join一般用于大表和小表之间的连接,我们将小表构建到内存中,称为Hash cluster,大表称为probe表。

 

当两个表做hash join时,oracle会选择一个表作为驱动表,先根据过滤条件排除不必要的数据,然后将结果集做成hash表,放入进程的hash area,接着扫描第二张表,将记录的join字段值做hash运算,到内存的hash表里面去探测,如果探测成功,就返回数据,否则这行就丢弃掉。

 

(miki西游 @mikixiyou 原文链接: http://mikixiyou.iteye.com/blog/1709321 )

 

 

select /*+use_nl(a b)*/ a.*,b.* 
from dba_obj a,all_obj b
where a.object_id=b.object_id
and a.object_name like 'tt%'



SELECT STATEMENT, GOAL = ALL_ROWS		
 NESTED LOOPS		
  TABLE ACCESS FULL	SCOTT	DBA_OBJ
  TABLE ACCESS BY INDEX ROWID	SCOTT	ALL_OBJ
   INDEX UNIQUE SCAN	SCOTT	PK_ALL_OBJ
 

执行计划解读

两个表使用了嵌套循环连接。首先访问dba_obj表,得到全部记录。然后按照此表记录依次去扫描all_obj表,扫描过程走索引快速得到all_obj的记录。

 

 

 

select /*+use_hash(a b)*/ a.*,b.* 
from dba_obj a,all_obj b
where a.object_id=b.object_id
and a.object_name like 'tt%'



SELECT STATEMENT, GOAL = ALL_ROWS		
 HASH JOIN		
  TABLE ACCESS FULL	SCOTT	DBA_OBJ
  TABLE ACCESS FULL	SCOTT	ALL_OBJ
 

 

执行计划解读

两个表使用了哈希连接。首先访问dba_obj表,得到全部记录,进行hash运算,放到内存hash area中形成hash table,也称为hash cluster。
然后,再腾出手来,全面扫描all_obj表,每扫描到一条记录时,将join字段进行hash运算,然后到hash area中去找与dba_obj表匹配的记录。
这个行为称为probe,中文称探测。此表也称为probe表。

 

 

hash table表是保存在hash area内存区域中,而这个区域在oracle中是分配在pga中。

PGA 包括 进程内存、UGA、sort area,bitmap merge area和hash area。UGA包含session状态信息和private sql area。

 

 

使用这个10104 event可以分析hash area的内存分配情况。

 

alter system set events '10104 trace name context forever,level 2';
 
select count(*)
  from (select /*+use_hash(i g) leading(i)*/
         i.*, g.*
          from tdividenddetail i, tproductinfo g
         where i.c_fundcode = g.fundcode
           and i.d_cdate > sysdate - 100);

 

 

使用use_hash提示强制让两个表采用hash join关联,然后使用leading提示强制让i表作为驱动表。

 

在hash area中,默认采用8个partition,每个partition保存若干个 hash table的记录。这些记录又以bucket逻辑结构存储。

分析trc文件内容如下所示:

 

*** RowSrcId: 1 HASH JOIN STATISTICS (INITIALIZATION) ***
Join Type: INNER join
Original hash-area size: 3064559
Memory for slot table: 2826240
Calculated overhead for partitions and row/slot managers: 238319
Hash-join fanout: 8
Number of partitions: 8
Number of slots: 23
Multiblock IO: 15
Block size(KB): 8
Cluster (slot) size(KB): 120
Minimum number of bytes per block: 8160
Bit vector memory allocation(KB): 128
Per partition bit vector length(KB): 16
Maximum possible row length: 1708
Estimated build size (KB): 0
Estimated Build Row Length (includes overhead): 408
# Immutable Flags:
  Not BUFFER(execution) output of the join for PQ
  Evaluate Left Input Row Vector
  Evaluate Right Input Row Vector
# Mutable Flags:
  IO sync
kxhfSetPhase: phase=BUILD
kxhfAddChunk: add chunk 0 (sz=32) to slot table
kxhfAddChunk: chunk 0 (lbs=0x2b4b26b47b20, slotTab=0x2b4b26b47ce8) successfuly added
kxhfSetPhase: phase=PROBE_1
qerhjFetch: max build row length (mbl=390)
*** RowSrcId: 1 END OF BUILD (PHASE 1) ***
  Revised row length: 370
  Revised build size: 9KB
kxhfResize(enter): resize to 12 slots (numAlloc=7, max=23)
kxhfResize(exit): resized to 12 slots (numAlloc=7, max=12)
  Slot table resized: old=23 wanted=12 got=12 unload=0
*** RowSrcId: 1 HASH JOIN RESIZE BUILD (PHASE 1) ***
Total number of partitions: 8
Number of partitions which could fit in memory: 8
Number of partitions left in memory: 8
Total number of slots in in-memory partitions: 7
kxhfResize(enter): resize to 13 slots (numAlloc=7, max=12)
kxhfResize(exit): resized to 13 slots (numAlloc=7, max=13)
  set work area size to: 1753K (13 slots)
*** RowSrcId: 1 HASH JOIN BUILD HASH TABLE (PHASE 1) ***
Total number of partitions: 8
Number of partitions left in memory: 8
Total number of rows in in-memory partitions: 27
   (used as preliminary number of buckets in hash table)
Estimated max # of build rows that can fit in avail memory: 8190
### Partition Distribution ###
Partition:0    rows:3          clusters:1      slots:1      kept=1
Partition:1    rows:5          clusters:1      slots:1      kept=1
Partition:2    rows:3          clusters:1      slots:1      kept=1
Partition:3    rows:4          clusters:1      slots:1      kept=1
Partition:4    rows:6          clusters:1      slots:1      kept=1
Partition:5    rows:3          clusters:1      slots:1      kept=1
Partition:6    rows:3          clusters:1      slots:1      kept=1
Partition:7    rows:0          clusters:0      slots:0      kept=1

Revised number of hash buckets (after flushing): 27
Allocating new hash table.

Requested size of hash table: 8
Actual size of hash table: 8
Number of buckets: 64
Match bit vector allocated: FALSE

Total number of rows (may have changed): 27
Number of in-memory partitions (may have changed): 8
Final number of hash buckets: 64
Size (in bytes) of hash table: 512
qerhjBuildHashTable(): done hash-table on partition=6, index=1 last_slot#=5 rows=3 total_rows=3
qerhjBuildHashTable(): done hash-table on partition=5, index=2 last_slot#=6 rows=3 total_rows=6
qerhjBuildHashTable(): done hash-table on partition=4, index=3 last_slot#=0 rows=6 total_rows=12
qerhjBuildHashTable(): done hash-table on partition=3, index=4 last_slot#=3 rows=4 total_rows=16
qerhjBuildHashTable(): done hash-table on partition=2, index=5 last_slot#=1 rows=3 total_rows=19
qerhjBuildHashTable(): done hash-table on partition=1, index=6 last_slot#=4 rows=5 total_rows=24
qerhjBuildHashTable(): done hash-table on partition=0, index=7 last_slot#=2 rows=3 total_rows=27
kxhfIterate(end_iterate): numAlloc=7, maxSlots=13

### Hash table ###
# NOTE: The calculated number of rows in non-empty buckets may be smaller
#       than the true number.
Number of buckets with   0 rows:         42
Number of buckets with   1 rows:         18
Number of buckets with   2 rows:          4
Number of buckets with   3 rows:          0
Number of buckets with   4 rows:          0
Number of buckets with   5 rows:          0
Number of buckets with   6 rows:          0
Number of buckets with   7 rows:          0
Number of buckets with   8 rows:          0
Number of buckets with   9 rows:          0
Number of buckets with between  10 and  19 rows:          0
Number of buckets with between  20 and  29 rows:          0
Number of buckets with between  30 and  39 rows:          0
Number of buckets with between  40 and  49 rows:          0
Number of buckets with between  50 and  59 rows:          0
Number of buckets with between  60 and  69 rows:          0
Number of buckets with between  70 and  79 rows:          0
Number of buckets with between  80 and  89 rows:          0
Number of buckets with between  90 and  99 rows:          0
Number of buckets with 100 or more rows:          0
### Hash table overall statistics ###
Total buckets: 64 Empty buckets: 42 Non-empty buckets: 22
Total number of rows: 27
Maximum number of rows in a bucket: 2
Average number of rows in non-empty buckets: 1.227273
*** 2012-10-31 10:37:15.443
qerhjFetch: max probe row length (mpl=0)
*** RowSrcId: 1, qerhjFreeSpace(): free hash-join memory
kxhfRemoveChunk: remove chunk 0 from slot table
 

 

附加:Alibaba DBA Team 关于Oracle hash join 的文档

 

当做hash join时,oracle会选择一个表作为驱动表,先根据过滤条件排除不必要的数据,然后将结果集做成hash表,放入进程的hash area,接着扫描第二张表,将行的键值做hash运算,到内存的hash表里面去探测,如果探测成功,就返回数据,否则这行就丢弃掉这个是最基本的解释,实际情况中,考虑到单个进程PGA的大小,oracle不会让进程任意的消耗OS内存,hash area是有一定限制的,所以在oracle中,hash也有三种模式:
optimal,onepass,multipass

 

optimal:当驱动结果集生成的hash表全部可以放入PGA的hash area时,称为optimal,大致过程如下:
1.先根据驱动表,得到驱动结果集
2.在hash area生成hash bulket,并将若干bulket分成一组,成为一个partition,还会生成一个bitmap的列表,每个bulket在上面占一位
3.对结果集的join键做hash运算,将数据分散到相应partition的bulket中,当运算完成后,如果键值唯一性较高的话,bulket里的数据会比较均匀,也有可能有的桶里面数据会是空的,这样bitmap上对应的标志位就是0,有数据的桶,标志位会是1
4.开始扫描第二张表,对jion键做hash运算,确定应该到某个partition的某个bulket去探测,探测之前,会看这个bulket的bitmap是否会1,如果为0,表示没数据,这行就直接丢弃掉
5.如果bitmap为1,则在桶内做精确匹配,判断OK后,返回数据

这个是最优的hash join,他的成本基本是两张表的full table scan,在加微量的hash运算

 

onepass
如果进程的pga很小,或者驱动表结果集很大,超过了hash area的大小,会怎么办?当然会用到临时表空间,此时oracle的处理方式稍微复杂点需奥注意上面提到的有个partition的概念,可以这么理解,数据是经过两次hash运算的,先确定你的partition,再确定你的bulket,假设hash area小于整个hash table,但至少大于一个partition的size,这个时候走的就是onepass
当我们生成好hash表后,状况是部分partition留在内存中,其他的partition留在磁盘临时表空间中,当然也有可能某个partition一半在内存,一半在磁盘,剩下的步骤大致如下:
1.扫描第二张表,对join键做hash运算,确定好对应的partition和bulket
2.查看bitmap,确定bulket是否有数据,没有则直接丢弃
3.如果有数据,并且这个partition是在内存中的,就进入对应的桶去精确匹配,能匹配上,就返回这行数据,否则丢弃
4.如果partition是在磁盘上的,则将这行数据放入磁盘中暂存起来,保存的形式也是partition,bulket的方式
5.当第二张表被扫描完后,剩下的是驱动表和探测表生成的一大堆partition,保留在磁盘上
6.由于两边的数据都按照相同的hash算法做了partition和bulket,现在只要成对的比较两边partition数据即可,并且在比较的时候,oracle也做了优化处理,没有严格的驱动与被驱动关系,他会在partition对中选较小的一个作为驱动来进行,直到磁盘上所有的partition对都join完

可以发现,相比optimal,他多出的成本是对于无法放入内存的partition,重新读取了一次,所以称为onepass,只要你的内存保证能装下一个partition,oracle都会腾挪空间,每个磁盘partition做到onepass

 

multipass
这是最复杂,最糟糕的hash join,此时hash area小到连一个partition也容纳不下,当扫描好驱动表后,可能只有半个partition留在hash area中,另半个加其他的partition全在磁盘上,剩下的步骤和onepass比价类似,不同的是针对partition的处理
由于驱动表只有半个partition在内存中,探测表对应的partition数据做探测时,如果匹配不上,这行还不能直接丢弃,需要继续保留到磁盘,和驱动表剩下的半个partition再做join,这里举例的是内存可以装下半个partition,如果装的更少的话,反复join的次数将更多,当发生multipass时,partition物理读的次数会显著增加