正则化
程序员文章站
2022-03-06 22:20:06
...
# L2正则化
from keras import regularizers
model = models.Sequential()
# l2(0.001)是指该层权重矩阵每个系数都会使网络总损失增加0.001*weight_coefficient_value
# 由于这个惩罚项只在训练时添加,因此这个网络的训练损失会比测试损失大很多
model.add(layers.Dense(16,kernel_regularizer=regularizers.l2(0.001),
activation='relu',input_shape=(10000,)))
model.add(layers.Dense(16,kernel_regularizer=regularizers.l2(0.001),
activation='relu',input_shape=(10000,)))
model.add(layers.Dense(1,activation='sigmoid'))
# L1正则化
regularizers.l1(0.001)
# 同时做L1和L2正则化
regularizers.l1_l2(l1=0.001,l2=0.001)
# dropout正则化
model = models.Sequential()
model.add(layers.Dense(16,activation='relu',input_shape=(10000,))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(16,activation='relu')
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1,activation='sigmoid')
上一篇: POI Excel合並單元格
下一篇: POI2014 Bricks