欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

机器学习-初级进阶(自然语言处理 )

程序员文章站 2022-03-06 21:24:22
...

一、自然语言处理

  1. 要处理的问题

    对于多组对话中判断这段化是消极的还是积极的
    
  2. 处理的短语数据

                                                Review  Liked
                             Wow... Loved this place.      1
                                   Crust is not good.      0
            Not tasty and the texture was just nasty.      0
    Stopped by during the late May bank holiday of...      1
    ...
    
  3. 代码实现

    from sklearn.feature_extraction.text import CountVectorizer
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import confusion_matrix
    from sklearn.naive_bayes import GaussianNB
    from nltk.stem.porter import PorterStemmer
    from nltk.corpus import stopwords
    import pandas as pd
    import re
    
    dataset = pd.read_csv("Restaurant_Reviews.tsv", delimiter='\t', quoting=3)
    corpus = []
    
    # 下载虚词词库
    # import nltk
    # nltk.download('stopwords')
    
    for i in range(1000):
        review = re.sub('[^a-zA-Z]', ' ', dataset['Review'][i])  # 将非字母替换成空格
        review = review.lower()  # 将大写替换成小写
        review = review.split()
        ps = PorterStemmer()
        review = [ps.stem(word) for word in review if not word in set(stopwords.words("english"))]  # 清理虚词, ps.stem(word): 词根化,比如loved->love
        review = " ".join(review)
        corpus.append(review)
        # print(review)
    
    cv = CountVectorizer(max_features=1500)  # 取1500个出现次数最多的
    X = cv.fit_transform(corpus).toarray()  # 稀疏矩阵转换
    y = dataset.iloc[:, 1].values
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
    
    classifier = GaussianNB()
    classifier = classifier.fit(X_train, y_train)
    
    y_pred = classifier.predict(X_test)
    
    cm = confusion_matrix(y_test, y_pred)
    

    输出结果:
    混淆矩阵结果:

    array([[55, 42],
       [12, 91]], dtype=int64) 
    

    真确率为73% 不是很理想,还算可以