欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

处理音频文件的python模块

程序员文章站 2022-05-04 14:11:58
...

首先是wave

def read_wav_data(filename):
	'''
	读取一个wav文件,返回声音信号的时域谱矩阵和播放时间
	'''
	filename="/home/chenyang/"+filename[2:]
	with wave.open(filename,"rb") as wav: # 打开一个wav格式的声音文件流
		num_frame = wav.getnframes() # 获取帧数
		num_channel=wav.getnchannels() # 获取声道数
		framerate=wav.getframerate() # 获取帧速率
		num_sample_width=wav.getsampwidth() # 获取实例的比特宽度,即每一帧的字节数
		str_data = wav.readframes(num_frame) # 读取全部的帧
		wav.close() # 关闭流
	wave_data = np.fromstring(str_data, dtype = np.short) # 将声音文件数据转换为数组矩阵形式
	wave_data.shape = -1, num_channel # 按照声道数将数组整形,单声道时候是一列数组,双声道时候是两列的矩阵
	wave_data = wave_data.T # 将矩阵转置
	#wave_data = wave_data 
	return wave_data, framerate  

接着就是

from python_speech_features import mfcc
from python_speech_features import delta
def GetMfccFeature(wavsignal, fs):
	# 获取输入特征
	feat_mfcc=mfcc(wavsignal[0],fs)
	feat_mfcc_d=delta(feat_mfcc,2)
	feat_mfcc_dd=delta(feat_mfcc_d,2)
	# 返回值分别是mfcc特征向量的矩阵及其一阶差分和二阶差分矩阵
	wav_feature = np.column_stack((feat_mfcc, feat_mfcc_d, feat_mfcc_dd))
	return wav_feature

接着就是

from scipy.io import wavfile as wav
fs, audio = wav.read(file)

这个是语谱图函数

def GetFrequencyFeature(wavsignal, fs):
	'''

	'''
	if(16000 != fs):
		raise ValueError('[Error] ASRT currently only supports wav audio files with a sampling rate of 16000 Hz, but this audio is ' + str(fs) + ' Hz. ')
	
	# wav波形 加时间窗以及时移10ms
	time_window = 25 # 单位ms
	window_length = fs / 1000 * time_window # 计算窗长度的公式,目前全部为400固定值
	
	wav_arr = np.array(wavsignal)
	#wav_length = len(wavsignal[0])
	wav_length = wav_arr.shape[1]
	
	range0_end = int(len(wavsignal[0])/fs*1000 - time_window) // 10 + 1 # 计算循环终止的位置,也就是最终生成的窗数
	data_input = np.zeros((range0_end, window_length // 2), dtype = np.float) # 用于存放最终的频率特征数据
	data_line = np.zeros((1, window_length), dtype = np.float)
	
	for i in range(0, range0_end):
		p_start = i * 160
		p_end = p_start + 400
		
		data_line = wav_arr[0, p_start:p_end]
		
		data_line = data_line * w # 加窗
		
		data_line = np.abs(fft(data_line)) / wav_length
		
		
		data_input[i]=data_line[0: window_length // 2] # 设置为400除以2的值(即200)是取一半数据,因为是对称的
		
	#print(data_input.shape)
	data_input = np.log(data_input + 1)
	return data_input

还用
torchaudio
https://pytorch.org/audio/
aukit

相关标签: 日常