40. Python 多线程共享变量 线程池
程序员文章站
2022-05-02 20:06:40
...
1.线程共享变量
多线程和多进程不同之处在于,多线程本身就是可以和父线程共享内存的,这也是为什么其中一个线程挂掉以后,为什么其他线程也会死掉的道理。
import threading
def worker(l):
l.append("li")
l.append("and")
l.append("lou")
if __name__ == "__main__":
l = []
l += range(1, 10)
print (l)
t = threading.Thread(target=worker, args=(l,))
t.start()
print (l)
返回结果:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 'li', 'and', 'lou']
2.线程池(扩展内容,了解即可)
通过传入一个参数组来实现多线程,并且它的多线程是有序的,顺序与参数组中的参数顺序保持一致。
安装包:
pip install threadpool
调用格式:
from threadpool import *
pool = TreadPool(poolsize)
requests = makeRequests(some_callable, list_of_args, callback)
[pool.putRequest(req) for req in requests]
pool.wait()
举例:
import threadpool
def hello(m, n, o):
print ("m = {0}, n = {1}, o = {2}".format(m, n, o))
if __name__ == "__main__":
#方法一:
lst_vars_1 = ['1','2','3']
lst_vars_2 = ['4','5','6']
func_var = [(lst_vars_1,None), (lst_vars_2, None)]
#方法二:
dict_vars_1 = {'m':'1','n':'2','o':'3'}
dict_vars_2 = {'m':'4','n':'5','o':'6'}
func_var = [(None, dict_vars_1), (None, dict_vars_2)]
pool = threadpool.ThreadPool(2)
requests = threadpool.makeRequests(hello, func_var)
[pool.putRequest(req) for req in requests]
pool.wait()
返回结果:
m = 1, n = 2, o = 3
m = 4, n = 5, o = 6
转载于:https://blog.51cto.com/286577399/2050860
上一篇: css3动画 -渐隐渐现