欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

KMP之我见

程序员文章站 2022-05-02 17:36:40
...

传统的简单匹配算法O(m*n):

 

int Index_BF ( char S [ ], char T [ ], int pos )
{
/* 若串 S 中从第pos(S 的下标0≤pos<StrLength(S))个字符
起存在和串 T 相同的子串,则称匹配成功,返回第一个
这样的子串在串 S 中的下标,否则返回 -1    */
int i = pos, j = 0;
while ( S[i+j] != '/0'&& T[j] != '/0')
if ( S[i+j] == T[j] )
j ++; // 继续比较后一字符
else
{
i ++; j = 0; // 重新开始新的一轮匹配
}
if ( T[j] == '/0')
return i; // 匹配成功   返回下标
else
return -1; // 串S中(第pos个字符起)不存在和串T相同的子串
} // Index_BF
 KMP算法O(m+n)
1、首先求出模式串的模式值next[i](当匹配失效出现时,失效字符前面的next[i]个字符与模式串的开头next[i]个字符串一样,下次比较的时候直接跳过前next[i]个字符)
模式值函数的定义:
1next[0]= -1 意义:任何串的第一个字符的模式值规定为-1
2next[j]= -1   意义:模式串T中下标为j的字符,如果与首字符
相同,且j的前面的j—k个字符与开头的j—k
个字符不等(或者相等但T[k]==T[j])(1k<j)。
如:T=”abCabCad”  next[6]=-1,因T[3]=T[6]
3next[j]=k    意义:模式串T中下标为j的字符,如果j的前面k
字符与开头的k个字符相等,且T[j] != T[k] 1k<j)。
                       T[0]T[1]T[2]。。。T[k-1]==
T[j-k]T[j-k+1]T[j-k+2]…T[j-1]
T[j] != T[k].1k<j;
(4) next[j]=0   意义:除(1)(2)(3)的其他情况
  
源程序如下:
void get_nextval(const char *T, int next[])
{
       // 求模式串T的next函数值并存入数组 next。
       int j = 0, k = -1;
       next[0] = -1;
       while ( T[j/*+1*/] != '/0' )
       {
              if (k == -1 || T[j] == T[k])
              {
                     ++j; ++k;
                     if (T[j]!=T[k])
                            next[j] = k;
                     else
                            next[j] = next[k];
              }// if
              else
                     k = next[k];
       }// while
    ////这里是我加的显示部分
   // for(int i=0;i<j;i++)
       //{
       //     cout<<next[i];
       //}
       //cout<<endl;
}// get_nextval 
另一种写法,也差不多。
void getNext(const char* pattern,int next[])
{
       next[0]=   -1;
       int k=-1,j=0;
       while(pattern[j] != '/0')
       {
              if(k!= -1 && pattern[k]!= pattern[j] )
                     k=next[k];
              ++j;++k;
              if(pattern[k]== pattern[j])
                     next[j]=next[k];
              else
                     next[j]=k;
       }
       ////这里是我加的显示部分
   // for(int i=0;i<j;i++)
       //{
       //     cout<<next[i];
       //}
       //cout<<endl;
}
2、KMP匹配
#include <iostream.h>
#include <string.h>
int KMP(const char *Text,const char* Pattern) //const 表示函数内部不会改变这个参数的值。
{
       if( !Text||!Pattern|| Pattern[0]=='/0' || Text[0]=='/0' )//
              return -1;//空指针或空串,返回-1。
       int len=0;
       const char * c=Pattern;
       while(*c++!='/0')//移动指针比移动下标快。
       {    
              ++len;//字符串长度。
       }
       int *next=new int[len+1];
       get_nextval(Pattern,next);//求Pattern的next函数值
   
       int index=0,i=0,j=0;
       while(Text[i]!='/0' && Pattern[j]!='/0' )
       {
              if(Text[i]== Pattern[j])
              {
                     ++i;// 继续比较后继字符
                     ++j;
              }
              else
              {
                     index += j-next[j];
                     if(next[j]!=-1)
                            j=next[j];// 模式串向右移动
                     else
                     {
                            j=0;
                            ++i;
                     }
              }
       }//while
   
       delete []next;
       if(Pattern[j]=='/0')
              return index;// 匹配成功
       else
              return -1;      
}
int main()//abCabCad
{
    char* text="bababCabCadcaabcaababcbaaaabaaacababcaabc";
    char*pattern="adCadCad";
       //getNext(pattern,n);
    //get_nextval(pattern,n);
      cout<<KMP(text,pattern)<<endl;
       return 0;
}
 
详细分析参考: http://blog.chinaunix.net/uid-27164517-id-3280128.html
相关标签: KMP 算法