数据挖掘之用户画像
程序员文章站
2022-05-01 14:25:19
...
目录:
一. 构造词向量特征
1.1 原始数据编码转换
import pandas as pd
import csv
# 训练数据
data_path = r'data\user_tag_query.10W.TRAIN'
csvfile = open(data_path + '-1w.csv', 'w')
writer = csv.writer(csvfile)
writer.writerow(['ID', 'age', 'Gender', 'Education', 'QueryList'])
with open(data_path, 'r', encoding = 'gb18030', errors = 'ignore') as f:
lines = f.readlines()
for line in lines[0: 10000]:
try:
line.strip()
data = line.split('\t')
writedata = [data[0], data[1], data[2], data[3]]
querystr = ''
data[-1] = data[-1][:-1]
for d in data[4:]:
try:
cur_str = d.encode('utf8')
cur_str = cur_str.decode('utf8')
querystr += cur_str + '\t'
except:
# print(data[0][0:10])
continue
querystr = querystr[:-1]
writedata.append(querystr)
writer.writerow(writedata)
except:
# print(data[0][0:20])
continue
# 测试数据
data_path = r'data\user_tag_query.10W.TEST'
csvfile = open(data_path + '-1w.csv', 'w')
writer = csv.writer(csvfile)
writer.writerow(['ID', 'age', 'Gender', 'Education', 'QueryList'])
with open(data_path, 'r', encoding = 'gb18030', errors = 'ignore') as f:
lines = f.readlines()
for line in lines[0: 10000]:
try:
line.strip()
data = line.split('\t')
writedata = [data[0], data[1], data[2], data[3]]
querystr = ''
data[-1] = data[-1][:-1]
for d in data[4:]:
try:
cur_str = d.encode('utf8')
cur_str = cur_str.decode('utf8')
querystr += cur_str + '\t'
except:
#print(data[0][0:10])
continue
querystr = querystr[:-1]
writedata.append(querystr)
writer.writerow(writedata)
except:
#print(data[0][0:20])
continue
trainname = r'data\user_tag_query.10W.TRAIN-1w.csv'
testname = r'data\user_tag_query.10W.TEST-1w.csv'
data = pd.read_csv(trainname, encoding = 'gbk')
print(data.shape)
data.head()
1.2 生成对应的数据表
data.age.to_csv(r'data\train_age.csv', index = False)
data.Gender.to_csv(r'data\train_gender.csv', index = False)
data.Education.to_csv(r'data\train_education.csv', index = False)
data.QueryList.to_csv(r'data\train_querylist.csv', index = False)
data = pd.read_csv(testname, encoding = 'gbk')
data.QueryList.to_csv(r'data\test_querylist.csv', index = False)
data.info()
1.3 分词与词性过滤
import numpy as np
import jieba.analyse
import time
import jieba
import jieba.posseg
import os, sys
def input(trainname):
traindata = []
with open(trainname, 'rb') as f:
line = f.readline()
count = 0
while line:
try:
traindata.append(line)
count += 1
except:
print('error:', line, count)
line = f.readline()
return traindata
start = time.clock()
filepath = r'data\train_querylist.csv'
QueryList = input(filepath)
writepath = r'data\train_querylist_writefile-1w.csv'
csvfile = open(writepath, 'w')
Pos = {}
for i in range(len(QueryList)):
if i % 2000 == 0 and i >= 1000:
print(i, 'finished')
s = []
str = ''
words = jieba.posseg.cut(QueryList[i]) # 带有词性的精确分词模式
allowPos = ['n', 'v', 'j']
for word, flag in words:
Pos[flag] = Pos.get(flag, 0) + 1
if (flag[0] in allowPos) and len(word) >= 2:
str += word + ' '
cur_str = str.encode('utf8')
cur_str = cur_str.decode('utf8')
s.append(cur_str)
csvfile.write(' '.join(s) + '\n')
csvfile.close()
end = time.clock()
print('Totle time: %f s' % (end - start))
Totle time: 659.842879 s
二. 构造输入特征
2.1 使用Gensim库建立word2vec词向量模型
from gensim.models import word2vec
train_path = r'F:\51学习\study\数据挖掘案例\用户画像\data\train_querylist_writefile-1w.csv'
with open(train_path, 'r') as f:
My_list = []
lines = f.readlines()
for line in lines:
cur_list = []
line = line.strip()
data = line.split(' ')
for d in data:
cur_list.append(d)
My_list.append(cur_list)
model = word2vec.Word2Vec(My_list, size = 300, window = 10, workers = 4)
savepath = '1w_word2vec_' + '300' + '.model' # 保存model的路径
model.save(savepath)
model.most_similar('高考')
2.2 加载训练好的word2vec模型,求用户搜索结果的平均向量
file_name = r'F:\51学习\study\数据挖掘案例\用户画像\data\train_querylist_writefile-1w.csv'
cur_model = word2vec.Word2Vec.load('1w_word2vec_300.model')
with open(file_name, 'r') as f:
cur_index = 0
lines = f.readlines()
doc_cev = np.zeros((len(lines), 300))
for line in lines:
word_vec = np.zeros((1, 300))
words = line.strip().split(' ')
word_num = 0
for word in words:
if word in cur_model:
word_num += 1
word_vec += np.array([cur_model[word]])
doc_cev[cur_index] = word_vec / float(word_num)
cur_index += 1
doc_cev.shape
# doc_cev[5]
(9988, 300)
genderlabel = np.loadtxt(open(r'data\train_gender.csv', 'r')).astype(int)
educationlabel = np.loadtxt(open(r'data\train_education.csv', 'r')).astype(int)
agelabel = np.loadtxt(open(r'data\train_age.csv', 'r')).astype(int)
print(genderlabel.shape, educationlabel.shape, agelabel.shape)
def removezero(x, y):
nozero = np.nonzero(y)
y = y[nozero]
x = np.array(x)
x = x[nozero]
return x, y
gender_train, genderlabel = removezero(doc_cev, genderlabel)
age_train, agelabel = removezero(doc_cev, agelabel)
education_train, educationlabel = removezero(doc_cev, educationlabel)
print(gender_train.shape, genderlabel.shape)
print(age_train.shape, agelabel.shape)
print(education_train.shape, educationlabel.shape)
(9988,) (9988,) (9988,)
(9756, 300) (9756,)
(9815, 300) (9815,)
(9064, 300) (9064,)
2.3 测试集
file_name = r'data\test_querylist_writefile-1w.csv'
cur_model = word2vec.Word2Vec.load('1w_word2vec_300.model')
with open(file_name, 'r') as f:
cur_index = 0
lines = f.readlines()
doc_cev = np.zeros((len(lines), 300))
for line in lines:
word_vec = np.zeros((1, 300))
words = line.strip().split(' ')
word_num = 0
for word in words:
if word in cur_model:
word_num += 1
word_vec += np.array([cur_model[word]])
doc_cev[cur_index] = word_vec / float(word_num)
cur_index += 1
print(doc_cev.shape)
doc_cev[5]
三. 建立预测模型
3.1 基础预测模型(逻辑回归)
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
%matplotlib inline
X_train, X_test, y_train, y_test = train_test_split(gender_train, genderlabel, test_size = 0.25, random_state = 42)
Lr_model = LogisticRegression()
Lr_model.fit(X_train, y_train)
y_pred = Lr_model.predict(X_test)
print(Lr_model.score(X_test, y_test))
cnf_matrix = confusion_matrix(y_test, y_pred)
print('Recall metric in the testing dataset: ', cnf_matrix[1, 1] / (cnf_matrix[1, 0] + cnf_matrix[1, 1]))
print('Accuracy metric in the testing dataset: ', (cnf_matrix[1, 1] + cnf_matrix[0, 0]) / (cnf_matrix[0, 0] + cnf_matrix[0, 1]
+ cnf_matrix[1, 0] + cnf_matrix[1, 1]))
import seaborn as sns
plt.figure(figsize = (8, 6))
sns.heatmap(cnf_matrix, annot = True, fmt = 'd', cmap = 'Blues')
plt.title('Gender-Confusion matrix')
0.8011480114801148
Recall metric in the testing dataset: 0.7280701754385965
Accuracy metric in the testing dataset: 0.8011480114801148
3.2 随机森林
from sklearn.ensemble import RandomForestClassifier
rfc_model = RandomForestClassifier(n_estimators = 100, min_samples_split = 5, max_depth = 10)
rfc_model.fit(X_train, y_train)
y_pred = rfc_model.predict(X_test)
print(rfc_model.score(X_test, y_test))
rfc_matrix = confusion_matrix(y_test, y_pred)
print('Recall metric in the testing dataset: ', rfc_matrix[1, 1] / (rfc_matrix[1, 0] + rfc_matrix[1, 1]))
print('Accuracy metric in the testing dataset: ', (rfc_matrix[1, 1] + rfc_matrix[0, 0]) / (rfc_matrix[0, 0] + rfc_matrix[0, 1]
+ rfc_matrix[1, 0] + rfc_matrix[1, 1]))
plt.figure(figsize = (8, 6))
sns.heatmap(rfc_matrix, annot = True, fmt = 'd', cmap = 'Blues')
plt.title('Gender-Confusion matrix')
0.8031980319803198
Recall metric in the testing dataset: 0.7348927875243665
Accuracy metric in the testing dataset: 0.8031980319803198
3.3 堆叠模型
from sklearn.svm import SVC
from sklearn.naive_bayes import MultinomialNB
clf1 = RandomForestClassifier(n_estimators=100,min_samples_split=5,max_depth=10)
clf2 = SVC()
clf3 = LogisticRegression()
basemodes = [['rf', clf1], ['svm', clf2], ['lr', clf3]]
from sklearn.model_selection import KFold, StratifiedKFold
models = basemodes
folds = KFold(n_splits=5, random_state=42)
S_train = np.zeros((X_train.shape[0], len(models)))
S_test = np.zeros((X_test.shape[0], len(models)))
for i, bm in enumerate(models):
clf = bm[1]
for train_idx, test_idx in folds.split(X_train):
X_train_cv = X_train[train_idx]
y_train_cv = y_train[train_idx]
X_val = X_train[test_idx]
clf.fit(X_train_cv, y_train_cv)
y_val = clf.predict(X_val)[:]
S_train[test_idx, i] = y_val
S_test[:,i] = clf.predict(X_test)
final_clf = RandomForestClassifier(n_estimators=100)
final_clf.fit(S_train,y_train)
print (final_clf.score(S_test,y_test))
0.8056580565805658
四. 模型测试
file_name = r'data\train_querylist_writefile-1w.csv'
cur_model = word2vec.Word2Vec.load('1w_word2vec_300.model')
with open(file_name, 'r') as f:
cur_index = 0
lines = f.readlines()
doc_cev = np.zeros((len(lines), 300))
for line in lines:
word_vec = np.zeros((1, 300))
words = line.strip().split(' ')
word_num = 0
for word in words:
if word in cur_model:
word_num += 1
word_vec += np.array([cur_model[word]])
doc_cev[cur_index] = word_vec / float(word_num)
cur_index += 1
print(doc_cev.shape)
genderlabel = np.loadtxt(open(r'data\train_gender.csv', 'r')).astype(int)
genderlabel.shape
(9988, 300)
(9988,)
def removezero(x, y):
nozero = np.nonzero(y)
y = y[nozero]
x = np.array(x)
x = x[nozero]
return x, y
gender_train, genderlabel = removezero(doc_cev, genderlabel)
print(gender_train.shape, genderlabel.shape)
(9756, 300) (9756,)
# 绘制混淆矩阵
import itertools
def plot_confusion_matrix(cm, classes, title = 'Confusion matrix', cmap = plt.cm.Blues):
plt.imshow(cm, interpolation = 'nearest', cmap = cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation = 0)
plt.yticks(tick_marks, classes)
thresh = cm.max() / 2
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j], horizontalalignment = 'center',
color = 'white' if cm[i, j] > thresh else 'black')
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
LR_model = LogisticRegression(class_weight = 'balanced', random_state = 42, penalty = 'l1')
LR_model.fit(gender_train, genderlabel)
y_pred = LR_model.predict(gender_train)
print(LR_model.score(gender_train, genderlabel))
cnf_matrix = confusion_matrix(genderlabel, y_pred)
print('Recall metric in the testing dataset:', cnf_matrix[1,1] / (cnf_matrix[1,0] + cnf_matrix[1,1]))
print('Accuracy metric in the testing dataset:', (cnf_matrix[1,1] + cnf_matrix[0,0])
/ (cnf_matrix[0,0] + cnf_matrix[0,1] + cnf_matrix[1,0] + cnf_matrix[1,1]))
class_names = [0, 1]
plt.figure(figsize = (8, 6))
plot_confusion_matrix(cnf_matrix, classes = class_names, title = 'Confusion matrix');
0.7988929889298892
Recall metric in the testing dataset: 0.8058852621167161
Accuracy metric in the testing dataset: 0.7988929889298892
上一篇: ubuntu14编译yocto笔记
下一篇: 采访,你挡自己的脸做什么呢?
推荐阅读
-
Android黑科技之读取用户短信+修改系统短信数据库
-
在ASP.NET 2.0中操作数据之七十四:用Managed Code创建存储过程和用户自定义函数(下部分)
-
在ASP.NET 2.0中操作数据之七十三:用Managed Code创建存储过程和用户自定义函数(上部分)
-
在ASP.NET 2.0中操作数据之七十三:用Managed Code创建存储过程和用户自定义函数(上部分)
-
数据挖掘之Apriori算法详解和Python实现代码分享
-
PHP爬虫之百万级别知乎用户数据爬取与分析
-
Mysql数据库高级用法之视图、事务、索引、自连接、用户管理实例分析
-
数据挖掘之Apriori算法详解和Python实现代码分享
-
SQLServer之删除用户自定义数据库用户
-
python数据挖掘之数据探索第一篇