【本文版权归微信公众号"代码艺术"(ID:onblog)所有,若是转载请务必保留本段原创声明,违者必究。若是文章有不足之处,欢迎关注微信公众号私信与我进行交流!】
斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........
这个数列从第3项开始,每一项都等于前两项之和。
简单来说,斐波那契数列可以用下面这个公式来表示。
{ 0 ,n=0
{ 1 ,n=1
{ f(n-1)+f(n-2) ,n>1
关于斐波那契数列衍生的算法题层出不穷,比如青蛙跳台阶问题等(题目:一只青蛙一次可以跳1级台阶,也可以条2级台阶。求该青蛙跳上一个n级的台阶总共有多少种跳法。),斐波那契数列问题的解法主要有两种,下面来看一下。
1.效率极低的递归解法
long fibonacci(int n){
if (n==0){
return 0;
}
if (n==1){
return 1;
}
return fibonacci(n-1)+fibonacci(n-2);
}
上面的代码已经非常直观和简单的展示了递归的思想。但这种解决问题的方式却是最差的。比如我们在求解f(10)时,需要先求f(9)和f(8)。同样,在求f(9)时,需要先求f(8)和f(7).....这种递归方法会导致重复计算的节点数随着 n 的增大而急剧增大,它的时间复杂度是以 n 的指数的方式递增的。
2.把递归的算法用循环实现
long fibonaccis(int n){
if (n==0){
return 0;
}
if (n==1){
return 1;
}
int zero = 0;//f(0)
int one = 1; //f(1)
int two = 0;
for (int i = 2; i <= n; i++) {
two = one+zero; //f(n)=f(n-1)+f(n-2)
zero = one;
one = two;
}
return two;
}
在上面的代码中,我们把已经得到的数列中间项保存起来,在下次需要计算的时候我们先查找一下,如果前面已经计算过就不用再重复计算了。
这个算法的流程是:
f(2)=f(1)+f(0)
f(3)=f(2)+f(1)
f(4)=f(3)+f(2)
...
3.解法比较
【本文版权归微信公众号"代码艺术"(ID:onblog)所有,若是转载请务必保留本段原创声明,违者必究。若是文章有不足之处,欢迎关注微信公众号私信与我进行交流!】
用不同的方法求解斐波那契数列的时间效率大不相同。第一种基于递归的解法虽然直观但时间效率很低,在实际软件开发中不会用这种方法,也不可能得到面试官的青睐。第二种方法把递归的算法用循环实现,极大地提高了时间效率。
版权声明
【本文版权归微信公众号"代码艺术"(ID:onblog)所有,若是转载请务必保留本段原创声明,违者必究。若是文章有不足之处,欢迎关注微信公众号私信与我进行交流!】