Hive运行引擎Tez
Tez是一个Hive的运行引擎,性能优于MR。为什么优于MR呢?看下图。
用Hive直接编写MR程序,假设有四个有依赖关系的MR作业,上图中,绿色是Reduce Task,云状表示写屏蔽,需要将中间结果持久化写到HDFS。
Tez可以将多个有依赖的作业转换为一个作业,这样只需写一次HDFS,且中间节点较少,从而大大提升作业的计算性能。
1.安装包准备
1.1 下载tez的依赖包:http://tez.apache.org
1.2 拷贝apache-tez-0.9.1-bin.tar.gz到hadoop102的/opt/software目录
1.3 解压缩apache-tez-0.9.1-bin.tar.gz
[aaa@qq.com module]$ tar -zxvf apache-tez-0.9.1-bin.tar.gz -C /opt/module
1.4 修改名称
[aaa@qq.com module]$ mv apache-tez-0.9.1-bin/ tez-0.9.1
2.在Hive中配置Tez
2.1 进入到Hive的配置目录:/opt/module/hive/conf
[aaa@qq.com conf]$ pwd
/opt/module/hive/conf
2.2 在hive-env.sh文件中添加tez环境变量配置和依赖包环境变量配置
# Set HADOOP_HOME to point to a specific hadoop install directory
export HADOOP_HOME=/opt/module/hadoop-2.7.2
# Hive Configuration Directory can be controlled by:
export HIVE_CONF_DIR=/opt/module/hive/conf
# Folder containing extra libraries required for hive compilation/execution can be controlled by:
export TEZ_HOME=/opt/module/tez-0.9.1 #是你的tez的解压目录
export TEZ_JARS=""
for jar in `ls $TEZ_HOME |grep jar`; do
export TEZ_JARS=$TEZ_JARS:$TEZ_HOME/$jar
done
for jar in `ls $TEZ_HOME/lib`; do
export TEZ_JARS=$TEZ_JARS:$TEZ_HOME/lib/$jar
done
export HIVE_AUX_JARS_PATH=/opt/module/hadoop-2.7.2/share/hadoop/common/hadoop-lzo-0.4.20.jar$TEZ_JARS
2.3 在hive-site.xml文件中添加如下配置,更改hive计算引擎
<property>
<name>hive.execution.engine</name>
<value>tez</value>
</property>
3.配置Tez
3.1 在Hive的/opt/module/hive/conf下面创建一个tez-site.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>tez.lib.uris</name> <value>${fs.defaultFS}/tez/tez-0.9.1,${fs.defaultFS}/tez/tez-0.9.1/lib</value>
</property>
<property>
<name>tez.lib.uris.classpath</name> <value>${fs.defaultFS}/tez/tez-0.9.1,${fs.defaultFS}/tez/tez-0.9.1/lib</value>
</property>
<property>
<name>tez.use.cluster.hadoop-libs</name>
<value>true</value>
</property>
<property>
<name>tez.history.logging.service.class</name> <value>org.apache.tez.dag.history.logging.ats.ATSHistoryLoggingService</value>
</property>
</configuration>
4.上传Tez到集群
4.1 将/opt/module/tez-0.9.1上传到HDFS的/tez路径
[aaa@qq.com conf]$ hadoop fs -mkdir /tez
[aaa@qq.com conf]$ hadoop fs -put /opt/module/tez-0.9.1/ /tez
[aaa@qq.com conf]$ hadoop fs -ls /tez
/tez/tez-0.9.1
5.测试
5.1 启动Hive、
[aaa@qq.com hive]$ bin/hive
5.2 创建LZO表
hive (default)> create table student(id int,name string);
5.3 向表中插入数据
hive (default)> insert into student values(1,"zhangsan");
5.4 如果没有报错就表示成功了
hive (default)> select * from student;
1 zhangsan
6.小结6.1 运行Tez时检查到用过多内存而被NodeManager杀死进程问题:
Caused by: org.apache.tez.dag.api.SessionNotRunning: TezSession has already shutdown. Application application_1546781144082_0005 failed 2 times due to AM Container for appattempt_1546781144082_0005_000002 exited with exitCode: -103
For more detailed output, check application tracking page:http://hadoop103:8088/cluster/app/application_1546781144082_0005Then, click on links to logs of each attempt.
Diagnostics: Container [pid=11116,containerID=container_1546781144082_0005_02_000001] is running beyond virtual memory limits. Current usage: 216.3 MB of 1 GB physical memory used; 2.6 GB of 2.1 GB virtual memory used. Killing container.
解决方法:
方案一:或者是关掉虚拟内存检查。我们选这个,修改yarn-site.xml,修改后一定要分发,并重新启动hadoop集群。
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
方案二:mapred-site.xml中设置Map和Reduce任务的内存配置如下:(value中实际配置的内存需要根据自己机器内存大小及应用情况进行修改)
<property>
<name>mapreduce.map.memory.mb</name>
<value>1536</value>
</property>
<property>
<name>mapreduce.map.java.opts</name>
<value>-Xmx1024M</value>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name>
<value>3072</value>
</property>
<property>
<name>mapreduce.reduce.java.opts</name>
<value>-Xmx2560M</value>
</property>
推荐阅读