欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

项目实践|基于Flink的用户行为日志分析系统

程序员文章站 2022-04-28 08:58:09
...

用户行为日志分析是实时数据处理很常见的一个应用场景,比如常见的PV、UV统计。本文将基于Flink从0到1构建一个用户行为日志分析系统,包括架构设计与代码实现。本文分享将完整呈现日志分析系统的数据处理链路,通过本文,你可以了解到:

  • 基于discuz搭建一个论坛平台
  • Flume日志收集系统使用方式
  • Apache日志格式分析
  • Flume与Kafka集成
  • 日志分析处理流程
  • 架构设计与完整的代码实现

项目简介

本文分享会从0到1基于Flink实现一个实时的用户行为日志分析系统,基本架构图如下:

项目实践|基于Flink的用户行为日志分析系统
首先会先搭建一个论坛平台,对论坛平台产生的用户点击日志进行分析。然后使用Flume日志收集系统对产生的Apache日志进行收集,并将其推送到Kafka。接着我们使用Flink对日志进行实时分析处理,将处理之后的结果写入MySQL供前端应用可视化展示。本文主要实现以下三个指标计算:

  • 统计热门板块,即访问量最高的板块
  • 统计热门文章,即访问量最高的帖子文章
  • 统计不同客户端对版块和文章的总访问量

基于discuz搭建一个论坛平台

安装XAMPP

  • 下载
wget https://www.apachefriends.org/xampp-files/5.6.33/xampp-linux-x64-5.6.33-0-installer.run
  • 安装
# 赋予文件执行权限
chmod u+x xampp-linux-x64-5.6.33-0-installer.run
# 运行安装文件
./xampp-linux-x64-5.6.33-0-installer.run
  • 配置环境变量

    将以下内容加入到 ~/.bash_profile

export XAMPP=/opt/lampp/
export PATH=$PATH:$XAMPP:$XAMPP/bin
  • 刷新环境变量
source ~/.bash_profile
  • 启动XAMPP
xampp restart
  • MySQL的root用户密码和权限修改
#修改root用户密码为123qwe 
update mysql.user set password=PASSWORD('123qwe') where user='root'; 
flush privileges;  
#赋予root用户远程登录权限 
grant all privileges on *.* to 'root'@'%' identified by '123qwe' with grant option;
flush privileges; 

安装Discuz

  • 下载discuz
wget http://download.comsenz.com/DiscuzX/3.2/Discuz_X3.2_SC_UTF8.zip
  • 安装
#删除原有的web应用  
rm -rf /opt/lampp/htdocs/*
unzip Discuz_X3.2_SC_UTF8.zip –d /opt/lampp/htdocs/
cd /opt/lampp/htdocs/  
mv upload/*   
#修改目录权限 
chmod 777 -R /opt/lampp/htdocs/config/
chmod 777 -R /opt/lampp/htdocs/data/
chmod 777 -R /opt/lampp/htdocs/uc_client/  
chmod 777 -R /opt/lampp/htdocs/uc_server/ 

Discuz基本操作

  • 自定义版块
  • 进入discuz后台:http://kms-4/admin.php
  • 点击顶部的论坛菜单
  • 按照页面提示创建所需版本,可以创建父子版块

项目实践|基于Flink的用户行为日志分析系统

Discuz帖子/版块存储数据库表介

-- 登录ultrax数据库
mysql -uroot -p123 ultrax 
-- 查看包含帖子id及标题对应关系的表
-- tid, subject(文章id、标题)
select tid, subject from pre_forum_post limit 10;
-- fid, name(版块id、标题)
select fid, name from pre_forum_forum limit 40;

当我们在各个板块添加帖子之后,如下所示:

项目实践|基于Flink的用户行为日志分析系统

修改日志格式

  • 查看访问日志
# 日志默认地址  
/opt/lampp/logs/access_log 
# 实时查看日志命令  
tail –f /opt/lampp/logs/access_log
  • 修改日志格式

Apache配置文件名称为httpd.conf,完整路径为/opt/lampp/etc/httpd.conf。由于默认的日志类型为common类型,总共有7个字段。为了获取更多的日志信息,我们需要将其格式修改为combined格式,该日志格式共有9个字段。修改方式如下:

# 启用组合日志文件
CustomLog "logs/access_log" combined

项目实践|基于Flink的用户行为日志分析系统

  • 重新加载配置文件
xampp reload

Apache日志格式介绍

192.168.10.1 - - [30/Aug/2020:15:53:15 +0800] "GET /forum.php?mod=forumdisplay&fid=43 HTTP/1.1" 200 30647 "http://kms-4/forum.php" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.135 Safari/537.36"

上面的日志格式共有9个字段,分别用空格隔开。每个字段的具体含义如下:

192.168.10.1 ##(1)客户端的IP地址
- ## (2)客户端identity标识,该字段为"-"
- ## (3)客户端userid标识,该字段为"-"
[30/Aug/2020:15:53:15 +0800] ## (4)服务器完成请求处理时的时间
"GET /forum.php?mod=forumdisplay&fid=43 HTTP/1.1" ## (5)请求类型 请求的资源 使用的协议
200 ## (6)服务器返回给客户端的状态码,200表示成功
30647 ## (7)返回给客户端不包括响应头的字节数,如果没有信息返回,则此项应该是"-"
"http://kms-4/forum.php" ## (8)Referer请求头
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.135 Safari/537.36" ## (9)客户端的浏览器信息

关于上面的日志格式,可以使用正则表达式进行匹配:

(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) (\S+) (\S+) (\[.+?\]) (\"(.*?)\") (\d{3}) (\S+) (\"(.*?)\") (\"(.*?)\")

Flume与Kafka集成

本文使用Flume对产生的Apache日志进行收集,然后推送至Kafka。需要启动Flume agent对日志进行收集,对应的配置文件如下:

# agent的名称为a1
a1.sources = source1
a1.channels = channel1
a1.sinks = sink1

# set source
a1.sources.source1.type = TAILDIR
a1.sources.source1.filegroups = f1
a1.sources.source1.filegroups.f1 = /opt/lampp/logs/access_log
a1sources.source1.fileHeader = flase

# 配置sink
a1.sinks.sink1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.sink1.brokerList=kms-2:9092,kms-3:9092,kms-4:9092
a1.sinks.sink1.topic= user_access_logs
a1.sinks.sink1.kafka.flumeBatchSize = 20
a1.sinks.sink1.kafka.producer.acks = 1
a1.sinks.sink1.kafka.producer.linger.ms = 1
a1.sinks.sink1.kafka.producer.compression.type = snappy

# 配置channel
a1.channels.channel1.type = file
a1.channels.channel1.checkpointDir = /home/kms/data/flume_data/checkpoint
a1.channels.channel1.dataDirs= /home/kms/data/flume_data/data

# 配置bind
a1.sources.source1.channels = channel1
a1.sinks.sink1.channel = channel1

知识点:

Taildir Source相比Exec SourceSpooling Directory Source的优势是什么?

TailDir Source:断点续传、多目录。Flume1.6以前需要自己自定义Source记录每次读取文件位置,实现断点续传

Exec Source:可以实时收集数据,但是在Flume不运行或者Shell命令出错的情况下,数据将会丢失

Spooling Directory Source:监控目录,不支持断点续传

值得注意的是,上面的配置是直接将原始日志push到Kafka。除此之外,我们还可以自定义Flume的拦截器对原始日志先进行过滤处理,同时也可以实现将不同的日志push到Kafka的不同Topic中。

启动Flume Agent

将启动Agent的命令封装成shell脚本:**start-log-collection.sh **,脚本内容如下:

#!/bin/bash
echo "start log agent !!!"
/opt/modules/apache-flume-1.9.0-bin/bin/flume-ng agent --conf-file /opt/modules/apache-flume-1.9.0-bin/conf/log_collection.conf --name a1 -Dflume.root.logger=INFO,console 

查看push到Kafka的日志数据

将控制台消费者命令封装成shell脚本:kafka-consumer.sh,脚本内容如下:

#!/bin/bash
echo "kafka consumer "
bin/kafka-console-consumer.sh  --bootstrap-server kms-2.apache.com:9092,kms-3.apache.com:9092,kms-4.apache.com:9092  --topic $1 --from-beginning

使用下面命令消费Kafka中的数据:

[aaa@qq.com kafka_2.11-2.1.0]$ ./kafka-consumer.sh  user_access_logs

日志分析处理流程

为了方便解释,下面会对重要代码进行讲解,完整代码移步github:https://github.com/jiamx/flink-log-analysis

项目实践|基于Flink的用户行为日志分析系统

创建MySQL数据库和目标表

-- 客户端访问量统计
CREATE TABLE `client_ip_access` (
  `client_ip` char(50) NOT NULL COMMENT '客户端ip',
  `client_access_cnt` bigint(20) NOT NULL COMMENT '访问次数',
  `statistic_time` text NOT NULL COMMENT '统计时间',
  PRIMARY KEY (`client_ip`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
-- 热门文章统计
CREATE TABLE `hot_article` (
  `article_id` int(10) NOT NULL COMMENT '文章id',
  `subject` varchar(80) NOT NULL COMMENT '文章标题',
  `article_pv` bigint(20) NOT NULL COMMENT '访问次数',
  `statistic_time` text NOT NULL COMMENT '统计时间',
  PRIMARY KEY (`article_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
-- 热门板块统计
CREATE TABLE `hot_section` (
  `section_id` int(10) NOT NULL COMMENT '版块id',
  `name` char(50) NOT NULL COMMENT '版块标题',
  `section_pv` bigint(20) NOT NULL COMMENT '访问次数',
  `statistic_time` text NOT NULL COMMENT '统计时间',
  PRIMARY KEY (`section_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

AccessLogRecord类

该类封装了日志所包含的字段数据,共有9个字段。

/**
 * 使用lombok
 * 原始日志封装类
 */
@Data
public class AccessLogRecord {
    public String clientIpAddress; // 客户端ip地址
    public String clientIdentity; // 客户端身份标识,该字段为 `-`
    public String remoteUser; // 用户标识,该字段为 `-`
    public String dateTime; //日期,格式为[day/month/yearhourminutesecond zone]
    public String request; // url请求,如:`GET /foo ...`
    public String httpStatusCode; // 状态码,如:200; 404.
    public String bytesSent; // 传输的字节数,有可能是 `-`
    public String referer; // 参考链接,即来源页
    public String userAgent;  // 浏览器和操作系统类型
}

LogParse类

该类是日志解析类,通过正则表达式对日志进行匹配,对匹配上的日志进行按照字段解析。

public class LogParse implements Serializable {

    //构建正则表达式
    private String regex = "(\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}) (\\S+) (\\S+) (\\[.+?\\]) (\\\"(.*?)\\\") (\\d{3}) (\\S+) (\\\"(.*?)\\\") (\\\"(.*?)\\\")";
    private Pattern p = Pattern.compile(regex);

    /*
     *构造访问日志的封装类对象
     * */
    public AccessLogRecord buildAccessLogRecord(Matcher matcher) {
        AccessLogRecord record = new AccessLogRecord();
        record.setClientIpAddress(matcher.group(1));
        record.setClientIdentity(matcher.group(2));
        record.setRemoteUser(matcher.group(3));
        record.setDateTime(matcher.group(4));
        record.setRequest(matcher.group(5));
        record.setHttpStatusCode(matcher.group(6));
        record.setBytesSent(matcher.group(7));
        record.setReferer(matcher.group(8));
        record.setUserAgent(matcher.group(9));
        return record;

    }

    /**
     * @param record:record表示一条apache combined 日志
     * @return 解析日志记录,将解析的日志封装成一个AccessLogRecord类
     */
    public AccessLogRecord parseRecord(String record) {
        Matcher matcher = p.matcher(record);
        if (matcher.find()) {
            return buildAccessLogRecord(matcher);
        }
        return null;
    }

    /**
     * @param request url请求,类型为字符串,类似于 "GET /the-uri-here HTTP/1.1"
     * @return 一个三元组(requestType, uri, httpVersion). requestType表示请求类型,如GET, POST等
     */
    public Tuple3<String, String, String> parseRequestField(String request) {
        //请求的字符串格式为:“GET /test.php HTTP/1.1”,用空格切割
        String[] arr = request.split(" ");
        if (arr.length == 3) {
            return Tuple3.of(arr[0], arr[1], arr[2]);
        } else {
            return null;
        }
    }

    /**
     * 将apache日志中的英文日期转化为指定格式的中文日期
     *
     * @param dateTime 传入的apache日志中的日期字符串,"[21/Jul/2009:02:48:13 -0700]"
     * @return
     */
    public String parseDateField(String dateTime) throws ParseException {
        // 输入的英文日期格式
        String inputFormat = "dd/MMM/yyyy:HH:mm:ss";
        // 输出的日期格式
        String outPutFormat = "yyyy-MM-dd HH:mm:ss";

        String dateRegex = "\\[(.*?) .+]";
        Pattern datePattern = Pattern.compile(dateRegex);

        Matcher dateMatcher = datePattern.matcher(dateTime);
        if (dateMatcher.find()) {
            String dateString = dateMatcher.group(1);
            SimpleDateFormat dateInputFormat = new SimpleDateFormat(inputFormat, Locale.ENGLISH);
            Date date = dateInputFormat.parse(dateString);

            SimpleDateFormat dateOutFormat = new SimpleDateFormat(outPutFormat);

            String formatDate = dateOutFormat.format(date);
            return formatDate;
        } else {
            return "";
        }
    }

    /**
     * 解析request,即访问页面的url信息解析
     * "GET /about/forum.php?mod=viewthread&tid=5&extra=page%3D1 HTTP/1.1"
     * 匹配出访问的fid:版本id
     * 以及tid:文章id
     * @param request
     * @return
     */
    public Tuple2<String, String> parseSectionIdAndArticleId(String request) {
        // 匹配出前面是"forumdisplay&fid="的数字记为版块id
        String sectionIdRegex = "(\\?mod=forumdisplay&fid=)(\\d+)";
        Pattern sectionPattern = Pattern.compile(sectionIdRegex);
        // 匹配出前面是"tid="的数字记为文章id
        String articleIdRegex = "(\\?mod=viewthread&tid=)(\\d+)";
        Pattern articlePattern = Pattern.compile(articleIdRegex);

        String[] arr = request.split(" ");
        String sectionId = "";
        String articleId = "";
        if (arr.length == 3) {
            Matcher sectionMatcher = sectionPattern.matcher(arr[1]);
            Matcher articleMatcher = articlePattern.matcher(arr[1]);
                sectionId = (sectionMatcher.find()) ? sectionMatcher.group(2) : "";
               articleId = (articleMatcher.find()) ? articleMatcher.group(2) : "";
        }
        return  Tuple2.of(sectionId, articleId);
    }
}

LogAnalysis类

该类是日志处理的基本逻辑

public class LogAnalysis {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment senv = StreamExecutionEnvironment.getExecutionEnvironment();
        // 开启checkpoint,时间间隔为毫秒
        senv.enableCheckpointing(5000L);
        // 选择状态后端
        // 本地测试
        // senv.setStateBackend(new FsStateBackend("file:///E://checkpoint"));
        // 集群运行
        senv.setStateBackend(new FsStateBackend("hdfs://kms-1:8020/flink-checkpoints"));
        // 重启策略
        senv.setRestartStrategy(
                RestartStrategies.fixedDelayRestart(3, Time.of(2, TimeUnit.SECONDS) ));

        EnvironmentSettings settings = EnvironmentSettings.newInstance()
                .useBlinkPlanner()
                .inStreamingMode()
                .build();
        StreamTableEnvironment tEnv = StreamTableEnvironment.create(senv, settings);
        // kafka参数配置
        Properties props = new Properties();
        // kafka broker地址
        props.put("bootstrap.servers", "kms-2:9092,kms-3:9092,kms-4:9092");
        // 消费者组
        props.put("group.id", "log_consumer");
        // kafka 消息的key序列化器
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        // kafka 消息的value序列化器
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("auto.offset.reset", "earliest");

        FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<String>(
                "user_access_logs",
                new SimpleStringSchema(),
                props);

        DataStreamSource<String> logSource = senv.addSource(kafkaConsumer);
        // 获取有效的日志数据
        DataStream<AccessLogRecord> availableAccessLog = LogAnalysis.getAvailableAccessLog(logSource);
        // 获取[clienIP,accessDate,sectionId,articleId]
        DataStream<Tuple4<String, String, Integer, Integer>> fieldFromLog = LogAnalysis.getFieldFromLog(availableAccessLog);
        //从DataStream中创建临时视图,名称为logs
        // 添加一个计算字段:proctime,用于维表JOIN
        tEnv.createTemporaryView("logs",
                fieldFromLog,
                $("clientIP"),
                $("accessDate"),
                $("sectionId"),
                $("articleId"),
                $("proctime").proctime());

        // 需求1:统计热门板块
        LogAnalysis.getHotSection(tEnv);
        // 需求2:统计热门文章
       LogAnalysis.getHotArticle(tEnv);
        // 需求3:统计不同客户端ip对版块和文章的总访问量
       LogAnalysis.getClientAccess(tEnv);
        senv.execute("log-analysisi");
    }

    /**
     * 统计不同客户端ip对版块和文章的总访问量
     * @param tEnv
     */
    private static void getClientAccess(StreamTableEnvironment tEnv) {
        // sink表
        // [client_ip,client_access_cnt,statistic_time]
        // [客户端ip,访问次数,统计时间]
        String client_ip_access_ddl = "" +
                "CREATE TABLE client_ip_access (\n" +
                "    client_ip STRING ,\n" +
                "    client_access_cnt BIGINT,\n" +
                "    statistic_time STRING,\n" +
                "    PRIMARY KEY (client_ip) NOT ENFORCED\n" +
                ")WITH (\n" +
                "    'connector' = 'jdbc',\n" +
                "    'url' = 'jdbc:mysql://kms-4:3306/statistics?useUnicode=true&characterEncoding=utf-8',\n" +
                "    'table-name' = 'client_ip_access', \n" +
                "    'driver' = 'com.mysql.jdbc.Driver',\n" +
                "    'username' = 'root',\n" +
                "    'password' = '123qwe'\n" +
                ") ";

        tEnv.executeSql(client_ip_access_ddl);

        String client_ip_access_sql = "" +
                "INSERT INTO client_ip_access\n" +
                "SELECT\n" +
                "    clientIP,\n" +
                "    count(1) AS access_cnt,\n" +
                "    FROM_UNIXTIME(UNIX_TIMESTAMP()) AS statistic_time\n" +
                "FROM\n" +
                "    logs \n" +
                "WHERE\n" +
                "    articleId <> 0 \n" +
                "    OR sectionId <> 0 \n" +
                "GROUP BY\n" +
                "    clientIP "
               ;
        tEnv.executeSql(client_ip_access_sql);

    }

    /**
     * 统计热门文章
     * @param tEnv
     */

    private static void getHotArticle(StreamTableEnvironment tEnv) {
        // JDBC数据源
        // 文章id及标题对应关系的表,[tid, subject]分别为:文章id和标题
        String pre_forum_post_ddl = "" +
                "CREATE TABLE pre_forum_post (\n" +
                "    tid INT,\n" +
                "    subject STRING,\n" +
                "    PRIMARY KEY (tid) NOT ENFORCED\n" +
                ") WITH (\n" +
                "    'connector' = 'jdbc',\n" +
                "    'url' = 'jdbc:mysql://kms-4:3306/ultrax',\n" +
                "    'table-name' = 'pre_forum_post', \n" +
                "    'driver' = 'com.mysql.jdbc.Driver',\n" +
                "    'username' = 'root',\n" +
                "    'password' = '123qwe'\n" +
                ")";
        // 创建pre_forum_post数据源
        tEnv.executeSql(pre_forum_post_ddl);
        // 创建MySQL的sink表
        // [article_id,subject,article_pv,statistic_time]
        // [文章id,标题名称,访问次数,统计时间]
        String hot_article_ddl = "" +
                "CREATE TABLE hot_article (\n" +
                "    article_id INT,\n" +
                "    subject STRING,\n" +
                "    article_pv BIGINT ,\n" +
                "    statistic_time STRING,\n" +
                "    PRIMARY KEY (article_id) NOT ENFORCED\n" +
                ")WITH (\n" +
                "    'connector' = 'jdbc',\n" +
                "    'url' = 'jdbc:mysql://kms-4:3306/statistics?useUnicode=true&characterEncoding=utf-8',\n" +
                "    'table-name' = 'hot_article', \n" +
                "    'driver' = 'com.mysql.jdbc.Driver',\n" +
                "    'username' = 'root',\n" +
                "    'password' = '123qwe'\n" +
                ")";
        tEnv.executeSql(hot_article_ddl);
        // 向MySQL目标表insert数据
        String hot_article_sql = "" +
                "INSERT INTO hot_article\n" +
                "SELECT \n" +
                "    a.articleId,\n" +
                "    b.subject,\n" +
                "    count(1) as article_pv,\n" +
                "    FROM_UNIXTIME(UNIX_TIMESTAMP()) AS statistic_time\n" +
                "FROM logs a \n" +
                "  JOIN pre_forum_post FOR SYSTEM_TIME AS OF a.proctime as b ON a.articleId = b.tid\n" +
                "WHERE a.articleId <> 0\n" +
                "GROUP BY a.articleId,b.subject\n" +
                "ORDER BY count(1) desc\n" +
                "LIMIT 10";

        tEnv.executeSql(hot_article_sql);

    }

    /**
     * 统计热门板块
     *
     * @param tEnv
     */
    public static void getHotSection(StreamTableEnvironment tEnv) {

        // 板块id及其名称对应关系表,[fid, name]分别为:版块id和板块名称
        String pre_forum_forum_ddl = "" +
                "CREATE TABLE pre_forum_forum (\n" +
                "    fid INT,\n" +
                "    name STRING,\n" +
                "    PRIMARY KEY (fid) NOT ENFORCED\n" +
                ") WITH (\n" +
                "    'connector' = 'jdbc',\n" +
                "    'url' = 'jdbc:mysql://kms-4:3306/ultrax',\n" +
                "    'table-name' = 'pre_forum_forum', \n" +
                "    'driver' = 'com.mysql.jdbc.Driver',\n" +
                "    'username' = 'root',\n" +
                "    'password' = '123qwe',\n" +
                "    'lookup.cache.ttl' = '10',\n" +
                "    'lookup.cache.max-rows' = '1000'" +
                ")";
        // 创建pre_forum_forum数据源
        tEnv.executeSql(pre_forum_forum_ddl);

        // 创建MySQL的sink表
        // [section_id,name,section_pv,statistic_time]
        // [板块id,板块名称,访问次数,统计时间]
        String hot_section_ddl = "" +
                "CREATE TABLE hot_section (\n" +
                "    section_id INT,\n" +
                "    name STRING ,\n" +
                "    section_pv BIGINT,\n" +
                "    statistic_time STRING,\n" +
                "    PRIMARY KEY (section_id) NOT ENFORCED  \n" +
                ") WITH (\n" +
                "    'connector' = 'jdbc',\n" +
                "    'url' = 'jdbc:mysql://kms-4:3306/statistics?useUnicode=true&characterEncoding=utf-8',\n" +
                "    'table-name' = 'hot_section', \n" +
                "    'driver' = 'com.mysql.jdbc.Driver',\n" +
                "    'username' = 'root',\n" +
                "    'password' = '123qwe'\n" +
                ")";

        // 创建sink表:hot_section
        tEnv.executeSql(hot_section_ddl);

        //统计热门板块
        // 使用日志流与MySQL的维表数据进行JOIN
        // 从而获取板块名称
        String hot_section_sql = "" +
                "INSERT INTO hot_section\n" +
                "SELECT\n" +
                "    a.sectionId,\n" +
                "    b.name,\n" +
                "    count(1) as section_pv,\n" +
                "    FROM_UNIXTIME(UNIX_TIMESTAMP()) AS statistic_time \n" +
                "FROM\n" +
                "    logs a\n" +
                "    JOIN pre_forum_forum FOR SYSTEM_TIME AS OF a.proctime as b ON a.sectionId = b.fid \n" +
                "WHERE\n" +
                "    a.sectionId <> 0 \n" +
                "GROUP BY a.sectionId, b.name\n" +
                "ORDER BY count(1) desc\n" +
                "LIMIT 10";
        // 执行数据insert
        tEnv.executeSql(hot_section_sql);

    }

    /**
     * 获取[clienIP,accessDate,sectionId,articleId]
     * 分别为客户端ip,访问日期,板块id,文章id
     *
     * @param logRecord
     * @return
     */
    public static DataStream<Tuple4<String, String, Integer, Integer>> getFieldFromLog(DataStream<AccessLogRecord> logRecord) {
        DataStream<Tuple4<String, String, Integer, Integer>> fieldFromLog = logRecord.map(new MapFunction<AccessLogRecord, Tuple4<String, String, Integer, Integer>>() {
            @Override
            public Tuple4<String, String, Integer, Integer> map(AccessLogRecord accessLogRecord) throws Exception {
                LogParse parse = new LogParse();

                String clientIpAddress = accessLogRecord.getClientIpAddress();
                String dateTime = accessLogRecord.getDateTime();
                String request = accessLogRecord.getRequest();
                String formatDate = parse.parseDateField(dateTime);
                Tuple2<String, String> sectionIdAndArticleId = parse.parseSectionIdAndArticleId(request);
                if (formatDate == "" || sectionIdAndArticleId == Tuple2.of("", "")) {

                    return new Tuple4<String, String, Integer, Integer>("0.0.0.0", "0000-00-00 00:00:00", 0, 0);
                }
                Integer sectionId = (sectionIdAndArticleId.f0 == "") ? 0 : Integer.parseInt(sectionIdAndArticleId.f0);
                Integer articleId = (sectionIdAndArticleId.f1 == "") ? 0 : Integer.parseInt(sectionIdAndArticleId.f1);
                return new Tuple4<>(clientIpAddress, formatDate, sectionId, articleId);
            }
        });
        return fieldFromLog;
    }

    /**
     * 筛选可用的日志记录
     *
     * @param accessLog
     * @return
     */
    public static DataStream<AccessLogRecord> getAvailableAccessLog(DataStream<String> accessLog) {
        final LogParse logParse = new LogParse();
        //解析原始日志,将其解析为AccessLogRecord格式
        DataStream<AccessLogRecord> filterDS = accessLog.map(new MapFunction<String, AccessLogRecord>() {
            @Override
            public AccessLogRecord map(String log) throws Exception {
                return logParse.parseRecord(log);
            }
        }).filter(new FilterFunction<AccessLogRecord>() {
            //过滤掉无效日志
            @Override
            public boolean filter(AccessLogRecord accessLogRecord) throws Exception {
                return !(accessLogRecord == null);
            }
        }).filter(new FilterFunction<AccessLogRecord>() {
            //过滤掉状态码非200的记录,即保留请求成功的日志记录
            @Override
            public boolean filter(AccessLogRecord accessLogRecord) throws Exception {
                return !accessLogRecord.getHttpStatusCode().equals("200");
            }
        });
        return filterDS;
    }
}

将上述代码打包上传到集群运行,在执行提交命令之前,需要先将Hadoop的依赖jar包放置在Flink安装目录下的lib文件下:flink-shaded-hadoop-2-uber-2.7.5-10.0.jar,因为我们配置了HDFS上的状态后端,而Flink的release包不含有Hadoop的依赖Jar包。

项目实践|基于Flink的用户行为日志分析系统

否则会报如下错误:

Caused by: org.apache.flink.core.fs.UnsupportedFileSystemSchemeException: Hadoop is not in the classpath/dependencies.

提交到集群

编写提交命令脚本

#!/bin/bash
/opt/modules/flink-1.11.1/bin/flink run -m kms-1:8081 \
-c com.jmx.analysis.LogAnalysis \
/opt/softwares/com.jmx-1.0-SNAPSHOT.jar

提交之后,访问Flink的Web界面,查看任务:

项目实践|基于Flink的用户行为日志分析系统

此时访问论坛,点击板块和帖子文章,观察数据库变化:

项目实践|基于Flink的用户行为日志分析系统

总结

本文主要分享了从0到1构建一个用户行为日志分析系统。首先,基于discuz搭建了论坛平台,针对论坛产生的日志,使用Flume进行收集并push到Kafka中;接着使用Flink对其进行分析处理;最后将处理结果写入MySQL供可视化展示使用。
项目实践|基于Flink的用户行为日志分析系统

相关标签: Flink flink