欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

深度:震惊世间的惊人代码(附完整代码)

程序员文章站 2022-04-26 18:33:40
...

深度:震惊世间的惊人代码(附完整代码)

一战封神的 0x5f375a86


雷神之锤3是一款九十年代非常经典的游戏,内容画面都相当不错,作者是大名鼎鼎的约翰卡马克。由于当时游戏背景原因,如果想要高效运行游戏优化必须做的非常好,否则普通人的配置性能根本不够用,在这个背景下就诞生了“快速开平方取倒数的算法”。

在早前自雷神之锤3的源码公开后,卡马克大神的代码“一战封神”,令人“匪夷所思”的 0x5f375a86 ,引领了一代传奇,源码如下:

float Q_rsqrt( float number ) {
    long i;
    float x2, y;
    const float threehalfs = 1.5F;
  x2 = number * 0.5F;
    y   = number;
    i   = * ( long * ) &y; 
  // evil floating point bit level hacking
    i   = 0x5f3759df - ( i >> 1 ); // what the fuck?
    y   = * ( float * ) &i;
    y   = y * ( threehalfs - ( x2 * y * y ) ); 
// 1st iteration
    // y   = y * ( threehalfs - ( x2 * y * y ) );
 // 2nd iteration, this can be removed
  #ifndef Q3_VM
    #ifdef __linux__
      assert( !isnan(y) );
 // bk010122 - FPE?
    #endif   
 #endif    
return y; }

相比 sqrt() 函数,这套算法要快将近4倍,要知道,编译器自带的函数,可是经过严格仔细的汇编优化的啊!

牛顿迭代法的原理是先猜测一个值,然后从这个值开始进行叠代。因此,猜测的值越准,叠代的次数越少。卡马克选了0x5f3759df这个值作为猜测的结果,再加上后面的移位算法,得到的y非常接近1/sqrt(n)。这样,我们只需要2次牛顿迭代法就可以达到我们所需要的精度。

函数返回1/sqrt(x),这个函数在图像处理中比sqrt(x)更有用。

注意到这个正数只用了一次叠代!(其实就是根本没用叠代,直接运算)。编译、实验,这个团数不仅工作的很好,而且比标准的sqrt()函数快4倍!

这个简洁的定数,最核心,也是最让人费解的,就是标注了what the fuck的一句 i   = 0x5f3759df - ( i >> 1 );再加上y   = y * ( threehalfs - ( x2 * y * y ) )。

两句话就完成了开方运算!而且注意到,核心那句是移位运算,速度极快!特别在很多没有乘法指令的RISC结构CPU上,这样做是极其高效的。

算法的原理就是使用牛顿迭代法,用 x-f(x)/f'(x) 来不断的逼近 f(x)=a 的根。

求平方根:f(x)=x^2=a ,f'(x)= 2*x, f(x)/f'(x)=x/2,把 f(x) 代入 x-f(x)/f'(x)后有(x+a/x)/2,

现在我们选 a=5,选一个猜测值比如 2,  那么我们可以这么算  5/2 = 2.5; (2.5+2)/2 = 2.25; 5/2.25 = ……  这样反复迭代下去,结果必定收敛于 sqrt(5)。

但是卡马克作者真正厉害的地方是他选择了一个神秘的常数 0x5f375a86来计算那个梦“值,


就是我们加注释的那一行那行算出的值非常接近1/sqrt(n)这样我们只需要2次牛顿迭代就可以达到我们所需要的精度。


当然目前也已有翻译过C++语言的版本:

float Q_rsqrt( float number )
{
    long i;
    float x2, y;
    const float threehalfs = 1.5F;


    x2 = number * 0.5F;
    y  = number;
    i  = * ( long * ) &y;
    i  = 0x5f3759df - ( i >> 1 ); // what the fuck?
    y  = * ( float * ) &i;
    y  = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
    // y   = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed


    #ifndef Q3_VM
    #ifdef __linux__
        assert( !isnan(y) ); // bk010122 - FPE?
    #endif
    #endif
    return y;
}

当然,更加魔幻的是,普渡大学的数学家Chris Lomont看了以后觉得有趣,但也不服气,决定要研究一下卡马克弄出来的这个猜测值有什么奥秘。

在精心研究之后,Lomont从理论上也推导出一个最佳猜测值,和卡马克的数字非常接近, 0x5f37642f。Lomont计算出结果以后非常满意,于是拿自己计算出的起始值和卡马克的神秘数字做比赛,看看谁的数字能够更快更精确的求得平方根。结果是卡马克赢了...

Lomont怒了,采用暴力方法一个数字一个数字试过来,终于找到一个比卡马克数字要好上那么一丁点的数字,虽然实际上这两个数字所产生的结果非常近似,这个暴力得出的数字是0x5f375a86。

囊括世界万物的一段代码

这是一段使用Processing语言的代码,这短短的几行代码永无休止的就在做一件事——“穷举”。那么它又有什么特殊之处吗?

忽略机器本身的性能限制,假设 frameCount 可以无限大(frameCount代表当前帧数)。只需安安静静地盯着屏幕,就可以看到所有像素的所有组合可能。

这意味着你可以在上面看到所有艺术大师的作品,蒙娜丽莎、向日葵甚至是初音……人类历史上所有光辉的瞬间都将闪现在眼前。

但是这又需要多久时间呢?计算机里的每个像素都是由 256 级的 RGB 组成的。因此可以表示 256 ³ (1600万)种颜色。假如图形的分辨率为 1000 × 1000,所有的像素可能的色值相互组合,将会产生 256 的 3000000 次方张不同图片。

如果将图片排在一个长廊上,人以一秒一张的速度去浏览。由于一年有 31536000 秒,因此要走完这条长廊,就需要 10⁷²²⁴⁷¹² 年。

这个数字已经大得很难用人类的常用单位去表示了。硬是要用,那就是 10亿亿亿亿亿亿......年(90万个亿)。要清楚,宇宙的年龄也仅仅是 140 亿年(1.4 × 10¹⁰年)。。

这也意味着,即使你从宇宙大爆炸看到现在,也无法将这个程序看完。

但如果把图片像素的精度降低呢?用 100 × 100 的分辨率并且只用黑白二值去表示图形?此时总数就会缩减到 2⁷⁰⁰⁰⁰ ,也就约等于 10³⁰¹⁰。

看似缩小很多了。如果同时动用全人类的力量,将这个任务分配给70亿人。每人还是要不眠不休地看上 3.17 × 10³⁰⁰² 年,才能看完。

即使化到最简,结果仍是大得恐怖。但如果能看完,我手上说不准会有一张 100 × 100 的HelloKitty头像,他手上或许能有一张爱因斯坦吐舌头的照片。

可以用这么简洁的形式去展现万物,用近乎无限的时间去换取无限的可能,我觉得这就是这段代码的魅力所在。

void setup(){
 size(500,500);
}
void draw(){
 for(int i=0;i<width;i++){
   for(int j=0;j<height;j++){
stroke(frameCount/pow(255,i+j*width)%255,frameCount/pow(255,i+j*width+1)%255,frameCount/pow(255,i+j*width+2)%255);
     point(i,j);
   }
 }
}

这段代码也有5x5的精简加速版本,当然其中的参数也是可以任意修改的,代码如下:

int num,w,frame,level;


void setup(){
 size(400, 400);
 num = 5;
 w = width/num;
 level = 2;     //色值精度
}


void draw(){
 for(int i = 0; i < num; i++){
   for(int j = 0; j < num; j++){
     fill((int(frame/pow(level,i + j * num)) % level)* (255 / (level - 1)));
     rect(w * i, w * j, w, w);
   }
 }
 // frame++;                       匀速播放  
 frame = int(pow(frameCount,2));   //加速播放
}

只有13个字符的Linux Fork炸弹

早在2002年,Jaromil设计了最为精简的一个Linux Fork炸弹,整个代码只有13个字符,在 shell 中运行后几秒后系统就会宕机:

:(){:|:&};:

这样看起来不是很好理解,我们可以更改下格式:

:()
{
:|:&
};
:

更好理解一点的话就是这样:

bomb()
{
bomb|bomb&
};
bomb

因为shell中函数可以省略function关键字,所以上面的十三个字符是功能是定义一个函数与调用这个函数,函数的名称为:,主要的核心代码是:|:&,可以看出这是一个函数本身的递归调用,通过&实现在后台开启新进程运行,通过管道实现进程呈几何形式增长,最后再通过:来调用函数引爆炸弹。因此,几秒钟系统就会因为处理不过来太多的进程而死机,解决的唯一办法就是重启。

当然有“不怕死”的小伙伴用了云主机试了一试:

深度:震惊世间的惊人代码(附完整代码)

结果,运行一段时间后直接报出了-bash: fork: Cannot allocate memory,说明内存不足了。

并且在二号终端上尝试连接也没有任何反应。因为是虚拟的云主机,所以我只能通过主机服务商的后台来给主机断电重启。然后才能重新登录:

深度:震惊世间的惊人代码(附完整代码)

当然,Fork炸弹用其它语言也可以分分钟写出来一个,例如,python版:

import os


while True:   os.fork()


Fork炸弹的本质无非就是靠创建进程来抢占系统资源,在Linux中,我们可以通过ulimit命令来限制用户的某些行为,运行ulimit -a可以查看我们能做哪些限制:

aaa@qq.com:~$ ulimit -a
core file size          (blocks, -c) 0
data seg size           (kbytes, -d) unlimited
scheduling priority             (-e) 0
file size               (blocks, -f) unlimited
pending signals                 (-i) 7782
max locked memory       (kbytes, -l) 64
max memory size         (kbytes, -m) unlimited
open files                      (-n) 1024
pipe size            (512 bytes, -p) 8
POSIX message queues     (bytes, -q) 819200
real-time priority              (-r) 0
stack size              (kbytes, -s) 8192
cpu time               (seconds, -t) unlimited
max user processes              (-u) 7782
virtual memory          (kbytes, -v) unlimited
file locks                      (-x) unlimited

可以看到,-u参数可以限制用户创建进程数,因此,我们可以使用ulimit -u 20来允许用户最多创建20个进程。这样就可以预防bomb炸弹。但这样是不彻底的,关闭终端后这个命令就失效了。我们可以通过修改/etc/security/limits.conf文件来进行更深层次的预防,在文件里添加如下一行(ubuntu需更换为你的用户名):

ubuntu - nproc 20

这样,退出后重新登录,就会发现最大进程数已经更改为20了,这个时候我们再次运行炸弹就不会报内存不足了,而是提示-bash: fork: retry: No child processes,说明Linux限制了炸弹创建进程。

东尼·霍尔的快速排序算法

这个算法是由图灵奖得主东尼·霍尔(C. A. R. Hoare)在1960年提出的,从名字中就可以看出,快速就是他的特点。

快速排序采用了“分治法”策略,把一个序列划分为两个子序列。在待排序列中,选择一个元素作为“基准”(Pivot)。

所有小于“基准”的元素,都移动到“基准”前面,所有大于“基准”的元素,都移动到“基准”后面(相同的数可以到任一边)。此为“分区”(partition)操作。

分别对“基准”两边的序列,不断重复一、二步,直至所有子集只剩下一个元素。

假设现有一数列:

深度:震惊世间的惊人代码(附完整代码)


对此数列进行快速排序。选择第一个元素 45 作为第一趟排序的“基准”(基准值可以任意选择)。


第一趟:将元素 45 拿出来,分别从数列的两端开始探测

首先从右向左开始,找到第一个小于 45 的元素为 25,然后将 25 放置到第一个元素 45 的位置上。此时数列变为:

深度:震惊世间的惊人代码(附完整代码)

然后从左向右开始,找到第一个大于 45 的元素为 66 ,然后将 66 放置到原先元素 25的位置上。此时数列变为:

深度:震惊世间的惊人代码(附完整代码)

继续从右向左开始,找到第二个小于 45 的元素为 10 ,然后将 10 放置到原先元素 66的位置上,此时数列变为:

深度:震惊世间的惊人代码(附完整代码)


继续从左向右开始,找到第二个大于 45 的元素为 90 ,然后将 90 放置到原先元素 10的位置上,此时数列变为:

深度:震惊世间的惊人代码(附完整代码)

继续从右向左开始,此时发现左右碰面,因此将“基准”45 放置到原先元素 90 的位置上,此时数列变为:

深度:震惊世间的惊人代码(附完整代码)


至此,第一轮结束,“基准”45 左侧为小数区,右侧为大数区。同样的分别对小数区和大数区应用此方法直至完成排序。

分析完成后通过C++的源代码如下:

快速排序核心算法:

//每一轮的快速排序
int QuickPartition (int a[],int low,int high)
{
    int temp = a[low];//选择数组a的第一个元素作为“基准”
    while(low < high)
    {
        while(low < high && a[high] >= temp )//从右向左查找第一个小于“基准”的数
        {
            high--;
        }
        if (low < high)
        {
            a[low] = a[high];//将第一个找到的大于“基准”的数移动到low处
            low++;
        }


        while(low < high && a[low] <= temp)//从左向右查找第一个大于“基准”的数
        {
            low++;
        }
        if(low < high)
        {
            a[high] = a[low];//将第一个找到的小于“基准”的数移动到high处
            high--;
        }


        a[low] = temp;//将“基准”填到最终位置
    }
    return low;//返回“基准”的位置,用于下一轮排序。
}

递归调用QuickSort(分治法):

//快速排序-递归算法
void QuickSort (int a[],int low,int high)
{
    if(low < high)
    {
        int temp = QuickPartition(a,low,high);//找出每一趟排序选择的“基准”位置
        QuickSort(a,low,temp-1);//递归调用QuickSort,对“基准”左侧数列排序
        QuickSort(a,temp+1,high);//对“基准”右侧数列排序
    }
}


主函数调用:

void main()
{
    int a[8]={45,38,66,90,88,10,25,45};//初始化数组a
    QuickSort(a,0,7);


    cout<<endl<<"排序后:";
    for(int i = 0;i <= 7;i++)
    {
        cout<<a[i]<<" ";
    }
    getchar();
}



排序后结果:

深度:震惊世间的惊人代码(附完整代码)

毫无炫技又惊为天人的

二分图的最大匹配、完美匹配和匈牙利算法


二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图。准确地说:把一个图的顶点划分为两个不相交集U和V,使得每一条边都分别连接U、V中的顶点。如果存在这样的划分,则此图为一个二分图。二分图的一个等价定义是:不含有「含奇数条边的环」的图。图 1 是一个二分图。为了清晰,我们以后都把它画成图 2 的形式。


匹配
:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。例如,图 3、图 4 中红色的边就是图 2 的匹配。
 

深度:震惊世间的惊人代码(附完整代码)

我们定义匹配点匹配边未匹配点非匹配边,它们的含义非常显然。例如图 3 中 1、4、5、7 为匹配点,其他顶点为未匹配点;1-5、4-7为匹配边,其他边为非匹配边。


最大匹配
:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。图 4 是一个最大匹配,它包含 4 条匹配边。


完美匹配
:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。图 4 是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。


举例来说:如下图所示,如果在某一对男孩和女孩之间存在相连的边,就意味着他们彼此喜欢。是否可能让所有男孩和女孩两两配对,使得每对儿都互相喜欢呢?图论中,这就是完美匹配问题。如果换一个说法:最多有多少互相喜欢的男孩/女孩可以配对儿?这就是最大匹配问题。

深度:震惊世间的惊人代码(附完整代码)


基本概念讲完了。求解最大匹配问题的一个算法是匈牙利算法,下面讲的概念都为这个算法服务。

深度:震惊世间的惊人代码(附完整代码)


交替路
:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边…形成的路径叫交替路。


增广路
:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。例如,图 5 中的一条增广路如图 6 所示(图中的匹配点均用红色标出):


深度:震惊世间的惊人代码(附完整代码)


增广路有一个重要特点:非匹配边比匹配边多一条。因此,研究增广路的意义是改进匹配。只要把增广路中的匹配边和非匹配边的身份交换即可。由于中间的匹配节点不存在其他相连的匹配边,所以这样做不会破坏匹配的性质。交换后,图中的匹配边数目比原来多了 1 条。


我们可以通过不停地找增广路来增加匹配中的匹配边和匹配点。找不到增广路时,达到最大匹配(这是增广路定理)。匈牙利算法正是这么做的。在给出匈牙利算法 DFS 和 BFS 版本的代码之前,先讲一下匈牙利树。


匈牙利树
一般由 BFS 构造(类似于 BFS 树)。从一个未匹配点出发运行 BFS(唯一的限制是,必须走交替路),直到不能再扩展为止。例如,由图 7,可以得到如图 8 的一棵 BFS 树:

深度:震惊世间的惊人代码(附完整代码)

    

这棵树存在一个叶子节点为非匹配点(7 号),但是匈牙利树要求所有叶子节点均为匹配点,因此这不是一棵匈牙利树。如果原图中根本不含 7 号节点,那么从 2 号节点出发就会得到一棵匈牙利树。这种情况如图 9 所示(顺便说一句,图 8 中根节点 2 到非匹配叶子节点 7 显然是一条增广路,沿这条增广路扩充后将得到一个完美匹配)。


下面给出匈牙利算法的 DFS 和 BFS 版本的代码:



// 顶点、边的编号均从 0 开始// 邻接表储存
struct Edge{    int from;    int to;    int weight;
    Edge(int f, int t, int w):from(f), to(t), weight(w) {}};
vector<int> G[__maxNodes]; /* G[i] 存储顶点 i 出发的边的编号 */vector<Edge> edges;typedef vector<int>::iterator iterator_t;int num_nodes;int num_left;int num_right;int num_edges;


int matching[__maxNodes]; /* 存储求解结果 */int check[__maxNodes];bool dfs(int u){    for (iterator_t i = G[u].begin(); i != G[u].end(); ++i) { // 对 u 的每个邻接点        int v = edges[*i].to;        if (!check[v]) {     // 要求不在交替路中            check[v] = true; // 放入交替路            if (matching[v] == -1 || dfs(matching[v])) {                // 如果是未盖点,说明交替路为增广路,则交换路径,并返回成功                matching[v] = u;                matching[u] = v;                return true;            }        }    }    return false; // 不存在增广路,返回失败}int hungarian(){    int ans = 0;    memset(matching, -1, sizeof(matching));    for (int u=0; u < num_left; ++u) {        if (matching[u] == -1) {            memset(check, 0, sizeof(check));            if (dfs(u))                ++ans;        }    }    return ans;}


queue<int> Q;int prev[__maxNodes];int Hungarian(){    int ans = 0;    memset(matching, -1, sizeof(matching));    memset(check, -1, sizeof(check));    for (int i=0; i<num_left; ++i) {        if (matching[i] == -1) {            while (!Q.empty()) Q.pop();            Q.push(i);            prev[i] = -1; // 设 i 为路径起点            bool flag = false; // 尚未找到增广路            while (!Q.empty() && !flag) {                int u = Q.front();                for (iterator_t ix = G[u].begin(); ix != G[u].end() && !flag; ++ix) {                    int v = edges[*ix].to;                    if (check[v] != i) {                        check[v] = i;                        Q.push(matching[v]);                        if (matching[v] >= 0) { // 此点为匹配点                            prev[matching[v]] = u;                        } else { // 找到未匹配点,交替路变为增广路                            flag = true;                            int d=u, e=v;                            while (d != -1) {                                int t = matching[d];                                matching[d] = e;                                matching[e] = d;                                d = prev[d];                                e = t;                            }                        }                    }                }                Q.pop();            }            if (matching[i] != -1) ++ans;        }    }    return ans;}


匈牙利算法的要点如下

  1. 从左边第 1 个顶点开始,挑选未匹配点进行搜索,寻找增广路。

    1. 如果经过一个未匹配点,说明寻找成功。更新路径信息,匹配边数 +1,停止搜索。

    2. 如果一直没有找到增广路,则不再从这个点开始搜索。事实上,此时搜索后会形成一棵匈牙利树。我们可以永久性地把它从图中删去,而不影响结果。

  2. 由于找到增广路之后需要沿着路径更新匹配,所以我们需要一个结构来记录路径上的点。DFS 版本通过函数调用隐式地使用一个栈,而 BFS 版本使用 prev 数组。


性能比较


两个版本的时间复杂度均为O(V·E)。DFS 的优点是思路清晰、代码量少,但是性能不如 BFS。我测试了两种算法的性能。对于稀疏图,BFS 版本明显快于 DFS 版本;而对于稠密图两者则不相上下。在完全随机数据 9000 个顶点 4,0000 条边时前者领先后者大约 97.6%,9000 个顶点 100,0000 条边时前者领先后者 8.6%, 而达到 500,0000 条边时 BFS 仅领先 0.85%。

补充定义和定理:


最大匹配数
:最大匹配的匹配边的数目


最小点覆盖数
:选取最少的点,使任意一条边至少有一个端点被选择


最大独立数
:选取最多的点,使任意所选两点均不相连


最小路径覆盖数
:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。


定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)

定理2:最大匹配数 = 最大独立数

定理3:最小路径覆盖数 = 顶点数 - 最大匹配数

-END-

深度:震惊世间的惊人代码(附完整代码)