【C++】STL --- 常用算法
程序员文章站
2022-03-05 20:22:46
...
【C++】STL --- 常用算法
一. 函数对象
1. 函数对象
重载函数调用操作符的类,其对象常称为函数对象(function object),即它们是行为类似函数的对象,也叫仿函数(functor),其实就是重载“()”操作符,使得类对象可以像函数那样调用。
- 注意:
- 函数对象(仿函数)是一个类,不是一个函数。
- 函数对象(仿函数)重载了”() ”操作符使得它可以像函数一样调用。
-
分类:假定某个类有一个重载的operator(),而且重载的operator()要求获取一个参数,我们就将这个类称为“一元仿函数”(unary functor);相反,如果重载的operator()要求获取两个参数,就将这个类称为“二元仿函数”(binary functor)。
-
函数对象的作用主要是什么?
STL提供的算法往往都有两个版本,其中一个版本表现出最常用的某种运算,另一版本则允许用户通过template参数的形式来指定所要采取的策略。
//函数对象是重载了函数调用符号的类
class MyPrint
{
public:
MyPrint()
{
m_Num = 0;
}
int m_Num;
public:
void operator()(int num)
{
cout << num << endl;
m_Num++;
}
};
//函数对象
//重载了()操作符的类实例化的对象,可以像普通函数那样调用,可以有参数 ,可以有返回值
void test01()
{
MyPrint myPrint;
myPrint(20);
}
// 函数对象超出了普通函数的概念,可以保存函数的调用状态
void test02()
{
MyPrint myPrint;
myPrint(20);
myPrint(20);
myPrint(20);
cout << myPrint.m_Num << endl;
}
void doBusiness(MyPrint print,int num)
{
print(num);
}
//函数对象作为参数
void test03()
{
//参数1:匿名函数对象
doBusiness(MyPrint(),30);
}
- 总结:
- 函数对象通常不定义构造函数和析构函数,所以在构造和析构时不会发生任何问题,避免了函数调用的运行时问题。
- 函数对象超出普通函数的概念,函数对象可以有自己的状态
- 函数对象可内联编译,性能好。用函数指针几乎不可能
- 模版函数对象使函数对象具有通用性,这也是它的优势之一
2. 谓词
谓词是指普通函数或重载的operator()返回值是bool类型的函数对象(仿函数)。如果operator接受一个参数,那么叫做一元谓词,如果接受两个参数,那么叫做二元谓词,谓词可作为一个判断式。
3. 内建函数对象
STL内建了一些函数对象。分为:算数类函数对象,关系运算类函数对象,逻辑运算类仿函数。这些仿函数所产生的对象,用法和一般函数完全相同,当然我们还可以产生无名的临时对象来履行函数功能。使用内建函数对象,需要引入头文件 #include。
- 6个算数类函数对象,除了negate是一元运算,其他都是二元运算。
template<class T> T plus<T>//加法仿函数
template<class T> T minus<T>//减法仿函数
template<class T> T multiplies<T>//乘法仿函数
template<class T> T divides<T>//除法仿函数
template<class T> T modulus<T>//取模仿函数
template<class T> T negate<T>//取反仿函数
- 6个关系运算类函数对象,每一种都是二元运算。
template<class T> bool equal_to<T>//等于
template<class T> bool not_equal_to<T>//不等于
template<class T> bool greater<T>//大于
template<class T> bool greater_equal<T>//大于等于
template<class T> bool less<T>//小于
template<class T> bool less_equal<T>//小于等于
- 逻辑运算类运算函数,not为一元运算,其余为二元运算。
template<class T> bool logical_and<T>//逻辑与
template<class T> bool logical_or<T>//逻辑或
template<class T> bool logical_not<T>//逻辑非
- 内建函数对象举例:
//取反仿函数
void test01()
{
negate<int> n;
cout << n(50) << endl;
}
//加法仿函数
void test02()
{
plus<int> p;
cout << p(10, 20) << endl;
}
//大于仿函数
void test03()
{
vector<int> v;
srand((unsigned int)time(NULL));
for (int i = 0; i < 10; i++)
{
v.push_back(rand() % 100);
}
for (vector<int>::iterator it = v.begin(); it != v.end(); it++)
{
cout << *it << " ";
}
cout << endl;
sort(v.begin(), v.end(), greater<int>());
for (vector<int>::iterator it = v.begin(); it != v.end(); it++)
{
cout << *it << " ";
}
cout << endl;
}
4. 函数对象适配器
//函数适配器bind1st bind2nd
//现在我有这个需求 在遍历容器的时候,我希望将容器中的值全部加上100之后显示出来,怎么做?
//我们直接给函数对象绑定参数 编译阶段就会报错
//for_each(v.begin(), v.end(), bind2nd(myprint(),100));
//如果我们想使用绑定适配器,需要我们自己的函数对象继承binary_function 或者 unary_function
//根据我们函数对象是一元函数对象 还是二元函数对象
class MyPrint :public binary_function<int,int,void>
{
public:
void operator()(int v1,int v2) const
{
cout << "v1 = : " << v1 << " v2 = :" <<v2 << " v1+v2 = :" << (v1 + v2) << endl;
}
};
//1、函数适配器
void test01()
{
vector<int>v;
for (int i = 0; i < 10; i++)
{
v.push_back(i);
}
cout << "请输入起始值:" << endl;
int x;
cin >> x;
for_each(v.begin(), v.end(), bind1st(MyPrint(), x));
//for_each(v.begin(), v.end(), bind2nd( MyPrint(),x ));
}
//总结: bind1st和bind2nd区别?
//bind1st : 将参数绑定为函数对象的第一个参数
//bind2nd : 将参数绑定为函数对象的第二个参数
//bind1st bind2nd将二元函数对象转为一元函数对象
class GreaterThenFive:public unary_function<int,bool>
{
public:
bool operator()(int v)const
{
return v > 5;
}
};
//2、取反适配器
void test02()
{
vector <int> v;
for (int i = 0; i < 10;i++)
{
v.push_back(i);
}
vector<int>::iterator it = find_if(v.begin(), v.end(), GreaterThenFive()); //返回第一个大于5的迭代器
vector<int>::iterator it = find_if(v.begin(), v.end(), not1(GreaterThenFive())); //返回第一个小于5迭代器
//自定义输入
vector<int>::iterator it = find_if(v.begin(), v.end(), not1 ( bind2nd(greater<int>(),5)));
if (it == v.end())
{
cout << "没找到" << endl;
}
else
{
cout << "找到" << *it << endl;
}
//排序 二元函数对象
sort(v.begin(), v.end(), not2(less<int>()));
for_each(v.begin(), v.end(), [](int val){cout << val << " "; });
}
//not1 对一元函数对象取反
//not2 对二元函数对象取反
void MyPrint03(int v,int v2)
{
cout << v + v2<< " ";
}
//3、函数指针适配器 ptr_fun
void test03()
{
vector <int> v;
for (int i = 0; i < 10; i++)
{
v.push_back(i);
}
// ptr_fun( )把一个普通的函数指针适配成函数对象
for_each(v.begin(), v.end(), bind2nd( ptr_fun( MyPrint03 ), 100));
}
//4、成员函数适配器
class Person
{
public:
Person(string name, int age)
{
m_Name = name;
m_Age = age;
}
//打印函数
void ShowPerson()
{
cout << "成员函数:" << "Name:" << m_Name << " Age:" << m_Age << endl;
}
void Plus100()
{
m_Age += 100;
}
public:
string m_Name;
int m_Age;
};
void MyPrint04(Person &p)
{
cout << "姓名:" << p.m_Name << " 年龄:" << p.m_Age << endl;
};
void test04()
{
vector <Person>v;
Person p1("aaa", 10);
Person p2("bbb", 20);
Person p3("ccc", 30);
Person p4("ddd", 40);
v.push_back(p1);
v.push_back(p2);
v.push_back(p3);
v.push_back(p4);
//for_each(v.begin(), v.end(), MyPrint04);
//利用 mem_fun_ref 将Person内部成员函数适配
for_each(v.begin(), v.end(), mem_fun_ref(&Person::ShowPerson));
// for_each(v.begin(), v.end(), mem_fun_ref(&Person::Plus100));
// for_each(v.begin(), v.end(), mem_fun_ref(&Person::ShowPerson));
}
void test05()
{
vector<Person*> v1;
//创建数据
Person p1("aaa", 10);
Person p2("bbb", 20);
Person p3("ccc", 30);
Person p4("ddd", 40);
v1.push_back(&p1);
v1.push_back(&p2);
v1.push_back(&p3);
v1.push_back(&p4);
for_each(v1.begin(), v1.end(), mem_fun(&Person::ShowPerson));
}
//如果容器存放的是对象指针, 那么用mem_fun
//如果容器中存放的是对象实体,那么用mem_fun_ref
二. 算法概述
算法主要是由头文件<algorithm> <functional> <numeric>组成。
<algorithm>是所有STL头文件中最大的一个,其中常用的功能涉及到比较,交换,查找,遍历,复制,修改,反转,排序,合并等...
<numeric>体积很小,只包括在几个序列容器上进行的简单运算的模板函数.
<functional> 定义了一些模板类,用以声明函数对象。
三. 常用遍历算法
/*
遍历算法 遍历容器元素
@param beg 开始迭代器
@param end 结束迭代器
@param _callback 函数回调或者函数对象
@return 函数对象
*/
for_each(iterator beg, iterator end, _callback);
/*
transform算法 将指定容器区间元素搬运到另一容器中
注意 : transform 不会给目标容器分配内存,所以需要我们提前分配好内存
@param beg1 源容器开始迭代器
@param end1 源容器结束迭代器
@param beg2 目标容器开始迭代器
@param _cakkback 回调函数或者函数对象
@return 返回目标容器迭代器
*/
transform(iterator beg1, iterator end1, iterator beg2, _callbakc)
for_each:
template<class _InIt,class _Fn1> inline
void for_each(_InIt _First, _InIt _Last, _Fn1 _Func)
{
for (; _First != _Last; ++_First)
_Func(*_First);
}
//普通函数
void print01(int val)
{
cout << val << " ";
}
//函数对象
struct print001
{
void operator()(int val)
{
cout << val << " ";
}
};
//for_each算法基本用法
void test01()
{
vector<int> v;
for (int i = 0; i < 10;i++)
{
v.push_back(i);
}
//遍历算法
for_each(v.begin(), v.end(), print01);
cout << endl;
for_each(v.begin(), v.end(), print001());
cout << endl;
}
struct print02
{
print02()
{
mCount = 0;
}
void operator()(int val)
{
cout << val << " ";
mCount++;
}
int mCount;
};
//for_each返回值
void test02()
{
vector<int> v;
for (int i = 0; i < 10; i++)
{
v.push_back(i);
}
print02 p = for_each(v.begin(), v.end(), print02());
cout << endl;
cout << p.mCount << endl;
}
struct print03 : public binary_function<int, int, void>
{
void operator()(int val,int bindParam) const
{
cout << val + bindParam << " ";
}
};
//for_each绑定参数输出
void test03()
{
vector<int> v;
for (int i = 0; i < 10; i++)
{
v.push_back(i);
}
for_each(v.begin(), v.end(), bind2nd(print03(),100));
}
transform:
//transform 将一个容器中的值搬运到另一个容器中
template<class _InIt, class _OutIt, class _Fn1> inline
_OutIt _Transform(_InIt _First, _InIt _Last,_OutIt _Dest, _Fn1 _Func)
{
for (; _First != _Last; ++_First, ++_Dest)
*_Dest = _Func(*_First);
return (_Dest);
}
template<class _InIt1,class _InIt2,class _OutIt,class _Fn2> inline
_OutIt _Transform(_InIt1 _First1, _InIt1 _Last1,_InIt2 _First2, _OutIt _Dest, _Fn2 _Func)
{
for (; _First1 != _Last1; ++_First1, ++_First2, ++_Dest)
*_Dest = _Func(*_First1, *_First2);
return (_Dest);
}
struct transformTest01
{
int operator()(int val)
{
return val + 100;
}
};
struct print01
{
void operator()(int val)
{
cout << val << " ";
}
};
void test01()
{
vector<int> vSource;
for (int i = 0; i < 10;i ++)
{
vSource.push_back(i + 1);
}
//目标容器
vector<int> vTarget;
//给vTarget开辟空间
vTarget.resize(vSource.size());
//将vSource中的元素搬运到vTarget
vector<int>::iterator it = transform(vSource.begin(), vSource.end(), vTarget.begin(), transformTest01());
//打印
for_each(vTarget.begin(), vTarget.end(), print01()); cout << endl;
}
//将容器1和容器2中的元素相加放入到第三个容器中
struct transformTest02
{
int operator()(int v1,int v2)
{
return v1 + v2;
}
};
void test02()
{
vector<int> vSource1;
vector<int> vSource2;
for (int i = 0; i < 10; i++)
{
vSource1.push_back(i + 1);
}
//目标容器
vector<int> vTarget;
//给vTarget开辟空间
vTarget.resize(vSource1.size());
transform(vSource1.begin(), vSource1.end(), vSource2.begin(),vTarget.begin(), transformTest02());
//打印
for_each(vTarget.begin(), vTarget.end(), print01()); cout << endl;
}
四. 常用查找算法
/*
find算法 查找元素
@param beg 容器开始迭代器
@param end 容器结束迭代器
@param value 查找的元素
@return 返回查找元素的位置
*/
find(iterator beg, iterator end, value)
/*
find_if算法 条件查找
@param beg 容器开始迭代器
@param end 容器结束迭代器
@param callback 回调函数或者谓词(返回bool类型的函数对象)
@return bool 查找返回true 否则false
*/
find_if(iterator beg, iterator end, _callback);
/*
adjacent_find算法 查找相邻重复元素
@param beg 容器开始迭代器
@param end 容器结束迭代器
@param _callback 回调函数或者谓词(返回bool类型的函数对象)
@return 返回相邻元素的第一个位置的迭代器
*/
adjacent_find(iterator beg, iterator end, _callback);
/*
binary_search算法 二分查找法
注意: 在无序序列中不可用
@param beg 容器开始迭代器
@param end 容器结束迭代器
@param value 查找的元素
@return bool 查找返回true 否则false
*/
bool binary_search(iterator beg, iterator end, value);
/*
count算法 统计元素出现次数
@param beg 容器开始迭代器
@param end 容器结束迭代器
@param value回调函数或者谓词(返回bool类型的函数对象)
@return int返回元素个数
*/
count(iterator beg, iterator end, value);
/*
count算法 统计元素出现次数
@param beg 容器开始迭代器
@param end 容器结束迭代器
@param callback 回调函数或者谓词(返回bool类型的函数对象)
@return int返回元素个数
*/
count_if(iterator beg, iterator end, _callback);
五. 常用排序算法
/*
merge算法 容器元素合并,并存储到另一容器中
@param beg1 容器1开始迭代器
@param end1 容器1结束迭代器
@param beg2 容器2开始迭代器
@param end2 容器2结束迭代器
@param dest 目标容器开始迭代器
*/
merge(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest)
/*
sort算法 容器元素排序
注意:两个容器必须是有序的
@param beg 容器1开始迭代器
@param end 容器1结束迭代器
@param _callback 回调函数或者谓词(返回bool类型的函数对象)
*/
sort(iterator beg, iterator end, _callback)
/*
sort算法 对指定范围内的元素随机调整次序
@param beg 容器开始迭代器
@param end 容器结束迭代器
*/
random_shuffle(iterator beg, iterator end)
/*
reverse算法 反转指定范围的元素
@param beg 容器开始迭代器
@param end 容器结束迭代器
*/
reverse(iterator beg, iterator end)
六. 常用拷贝算法
/*
copy算法 将容器内指定范围的元素拷贝到另一容器中
@param beg 容器开始迭代器
@param end 容器结束迭代器
@param dest 目标起始迭代器
*/
copy(iterator beg, iterator end, iterator dest)
/*
replace算法 将容器内指定范围的旧元素修改为新元素
@param beg 容器开始迭代器
@param end 容器结束迭代器
@param oldvalue 旧元素
@param oldvalue 新元素
*/
replace(iterator beg, iterator end, oldvalue, newvalue)
/*
replace_if算法 将容器内指定范围满足条件的元素替换为新元素
@param beg 容器开始迭代器
@param end 容器结束迭代器
@param callback函数回调或者谓词(返回Bool类型的函数对象)
@param oldvalue 新元素
*/
replace_if(iterator beg, iterator end, _callback, newvalue)
/*
swap算法 互换两个容器的元素
@param c1容器1
@param c2容器2
*/
swap(container c1, container c2)
七. 常用算数生成算法
/*
accumulate算法 计算容器元素累计总和
@param beg 容器开始迭代器
@param end 容器结束迭代器
@param value累加值
*/
accumulate(iterator beg, iterator end, value)
/*
fill算法 向容器中添加元素
@param beg 容器开始迭代器
@param end 容器结束迭代器
@param value t填充元素
*/
fill(iterator beg, iterator end, value)
八. 常用集合算法
/*
set_intersection算法 求两个set集合的交集
注意:两个集合必须是有序序列
@param beg1 容器1开始迭代器
@param end1 容器1结束迭代器
@param beg2 容器2开始迭代器
@param end2 容器2结束迭代器
@param dest 目标容器开始迭代器
@return 目标容器的最后一个元素的迭代器地址
*/
set_intersection(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest)
/*
set_union算法 求两个set集合的并集
注意:两个集合必须是有序序列
@param beg1 容器1开始迭代器
@param end1 容器1结束迭代器
@param beg2 容器2开始迭代器
@param end2 容器2结束迭代器
@param dest 目标容器开始迭代器
@return 目标容器的最后一个元素的迭代器地址
*/
set_union(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest)
/*
set_difference算法 求两个set集合的差集
注意:两个集合必须是有序序列
@param beg1 容器1开始迭代器
@param end1 容器1结束迭代器
@param beg2 容器2开始迭代器
@param end2 容器2结束迭代器
@param dest 目标容器开始迭代器
@return 目标容器的最后一个元素的迭代器地址
*/
set_difference(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest)
上一篇: 线性代数精华1——从行列式开始