欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

期末大作业

程序员文章站 2022-04-22 10:54:15
...

一、boston房价预测

1. 读取数据集

2. 训练集与测试集划分

3. 线性回归模型:建立13个变量与房价之间的预测模型,并检测模型好坏。

4. 多项式回归模型:建立13个变量与房价之间的预测模型,并检测模型好坏。

5. 比较线性模型与非线性模型的性能,并说明原因。

 

#线性回归模型:建立13个变量与房价之间的预测模型,并检测模型好坏。
from sklearn.datasets import load_boston
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
boston=load_boston()#导入数据集
x = boston.data
y = boston.target
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)#划分训练集和测试集
lineR=LinearRegression()#线性模型
lineR.fit(x_train,y_train)
#判断模型的好坏
print('线性回归模型预测的准确率:',lineR.score(x_test,y_test))
#4. 多项式回归模型:建立13个变量与房价之间的预测模型,并检测模型好坏。
from sklearn.preprocessing import PolynomialFeatures
poly=PolynomialFeatures(degree=2)
from sklearn.linear_model import LinearRegression
lineR=LinearRegression()
x= boston.data
y = boston.target
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)#划分训练集和测试集
#多项式操作
x_train_poly=poly.fit_transform(x_train)
x_test_poly=poly.transform(x_test)
lineR.fit(x_train_poly,y_train)#建立模型
print('多项式回归模型预测的准确率:',lineR.score(x_test_poly,y_test))

#图形化
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
lineR=LinearRegression()
lineR.fit(x_train_poly,y_train)
y_poly_pred=lineR.predict(x_test_poly)
plt.plot(y,y,'r')
plt.scatter(y_test,y_poly_pred)
plt.show()

期末大作业

 

  期末大作业

线性模型与非线性模型性能的区别:

一个模型如果是线性的,就意味着它的参数项要么是常数,要么是原参数和要预测的特征之间的乘积的和就是我们要预测的值。

线性模型计算复杂度较低,不足之处是模型拟合效果相对弱些。非线性模型拟合能力较强,不足之处是数据量不足容易过拟合,计算复杂度高,可解释性不好。

 

二、中文文本分类

按学号未位下载相应数据集。

147:财经、**、房产、股票、

258:家居、教育、科技、社会、时尚、

0369:时政、体育、星座、游戏、娱乐

分别建立中文文本分类模型,实现对文本的分类。基本步骤如下:

1.各种获取文件,写文件

2.除去噪声,如:格式转换,去掉符号,整体规范化

3.遍历每个个文件夹下的每个文本文件。

4.使用jieba分词将中文文本切割。

中文分词就是将一句话拆分为各个词语,因为中文分词在不同的语境中歧义较大,所以分词极其重要。

可以用jieba.add_word('word')增加词,用jieba.load_userdict('wordDict.txt')导入词库。

维护自定义词库

5.去掉停用词。

维护停用词表

6.对处理之后的文本开始用TF-IDF算法进行单词权值的计算

7.贝叶斯预测种类

8.模型评价

9.新文本类别预测

 

#导包
import jieba
import os

# 导入停用词
stopword=open('D:\大学作业\大三\数据挖掘基础算法(杜云梅)\stopsCN.txt','r',encoding="utf-8").read()

#数据处理
def processing(tokens):
    # 去掉非字母汉字的字符
    tokens = "".join([char for char in tokens if char.isalpha()])
    # 结巴分词
    tokens = [token for token in jieba.cut(tokens,cut_all=True) if len(token) >=2]
    # 去掉停用词
    tokens = " ".join([token for token in tokens if token not in stopword])
    return tokens
#词频统计
def count(tokens):
    lifedict = {}
    for word in tokens:
        if len(word) == 1:
            continue
    else:
        lifedict[word] = lifedict.get(word, 0) + 1

    wordlist = list(lifedict.items())
    wordlist.sort(key=lambda x: x[1], reverse=True)#降序排序

#读取文件
all_txt=[]
all_target=[]
path = r'D:\大学作业\大三\数据挖掘基础算法(杜云梅)\0369'
files = os.listdir(path)
for root,dirs,files in os.walk(path):
    for file in files:
        filepath = os.path.join(root, file)  # 文件路径
        tokens=open(filepath,'r',encoding='utf-8').read()
        tokens=processing(tokens)
        all_txt.append(tokens)
        target = filepath.split('\\')[-2]#按文件夹获取特征名
        all_target.append(target)

#按6:4比例分为训练集和测试集
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(all_txt,all_target,test_size=0.4,stratify=all_target)
#将其向量化
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer=TfidfVectorizer()
X_train=vectorizer.fit_transform(x_train)
X_test=vectorizer.transform(x_test)
#分类结果显示
from sklearn.naive_bayes import  MultinomialNB
mnb=MultinomialNB()
clf=mnb.fit(X_train,y_train)
#进行预测
y_predict = clf.predict(X_test)
# 输出模型精确度
from sklearn.model_selection import cross_val_score
from sklearn.metrics import classification_report
scores=cross_val_score(mnb,X_test,y_test,cv=4)
print("精确度:%.3f"%scores.mean())
# 输出模型评估报告
print("classification_report:\n",classification_report(y_predict,y_test))
y_nb_pred = clf.predict(X_test)
# 将预测结果和实际结果进行对比
import collections

# 统计测试集和预测集的各类新闻个数
testCount = collections.Counter(y_test)
predCount = collections.Counter(y_predict)
print('实际:',testCount,'\n', '预测', predCount)
# 建立标签列表,实际结果列表,预测结果列表,
nameList = list(testCount.keys())
testList = list(testCount.values())
predictList = list(predCount.values())

print("新闻类别:",nameList,'\n',"实际:",testList,'\n',"预测:",predictList)

 期末大作业