欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python基础之并发编程(三)

程序员文章站 2022-03-05 17:01:24
目录一、协程定义和作用1、使用协程的优点2、使用协程的缺点二、greenlet 的使用三、gevent的使用四、async io 异步 io1、asyncio中的task的使用五、总结进程与线程的区别...

一、协程定义和作用

协程(coroutine),又称为微线程,纤程。(协程是一种用户态的轻量级线程)

作用:在执行 a 函数的时候,可以随时中断,去执行 b 函数,然后中断继续执行 a 函数 (可以自动切换),单着一过程并不是函数调用(没有调用语句),过程很像多线程,然而协 程只有一个线程在执行

python基础之并发编程(三)

1、使用协程的优点

由于自身带有上下文和栈,无需线程上下文切换的开销,属于程序级别的切换,操作系统 完全感知不到,因而更加轻量级;

无需原子操作的锁定及同步的开销;

方便切换控制流,简化编程模型

单线程内就可以实现并发的效果,最大限度地利用 cpu,且可扩展性高,成本低(注:一 个 cpu 支持上万的协程都不是问题。所以很适合用于高并发处理)

2、使用协程的缺点

无法利用多核资源:协程的本质是个单线程,它不能同时将 单个 cpu 的多个核用上,协 程需要和进程配合才能运行在多 cpu 上.当然我们日常所编写的绝大部分应用都没有这个必 要,除非是 cpu 密集型应用。

进行阻塞(blocking)操作(如 io 时)会阻塞掉整个程序

# 协程的基本使用,  实现两个任务的切换         yield  和 next 来回切换
def func1():
    for i in range(11):
        print(f"一班打印第{i}次数据")
        yield
def func2():
    g = func1()
    next(g)
    for i in range(10):
        print(f"二班打印第{i}次数据")
        next(g)
if __name__ == "__main__":
    func2()

二、greenlet 的使用

单线程内有多个任务,用greenlet实现任务的切换 greenlet 和 switch 组合

from greenlet import greenlet
# pip install greenlet
def gf(name):
    print(f'{name}:我想王者!!')
    g2.switch('zf')
    print(f'{name}:我想吃大餐!!!')
    g2.switch()
def bf(name):
    print(f'{name}:一块去完!!!')
    g1.switch()
    print(f'{name}:一起去吃!!')
if __name__ == "__main__":
    g1 = greenlet(gf)
    g2 = greenlet(bf)
    # 切换任务
    g1.switch('dc')   # 只需要第一次上传

三、gevent的使用

gevent 是一个第三方库,可以轻松通过 gevent 实现并发同步或异步编程,在 gevent 中用到的主要模式是 greenlet,它是以 c 扩展模块形式接入 python 的轻量级协程。

greenlet 全部运行在主程序操作系统进程的内部,但他们被协作式地调度。

from gevent import monkey; # 为了能识别time模块的io
monkey.patch_all()  #必须放到被打补丁者的前面,如 time,socket 模块之前
import gevent
# pip install gevent
from time import time,sleep
def gf(name):
    print(f'{name}:我想打王者!!')
    # gevent.sleep(2)
    sleep(2)
    print(f'{name}:我想吃大餐!!!')
def bf(name):
    print(f'{name}:一起打!!!')
    # gevent.sleep(2)
    sleep(2)
    print(f'{name}:一快去吃!!')
if __name__ == "__main__":
    start = time()
    # 创建协程对象
    g1 = gevent.spawn(gf,'貂蝉')
    g2 = gevent.spawn(bf,'吕布')
    # 开启任务
    g1.join()
    g2.join()
    end = time()
    print(end-start)

注意:上例 gevent.sleep(2)模拟的是 gevent 可以识别的 io 阻塞; 而 time.sleep(2)或其他的阻塞,gevent 是不能直接识别的需要用下面一行代码,打补丁,就 可以识别了

四、async io 异步 io

asyncio 是 python3.4 之后的协程模块,是 python 实现并发重要的包,这个包使用事件 循环驱动实现并发。

事件循环是一种处理多并发量的有效方式,在*中它被描述为「一种等待程序分配 事件或消息的编程架构」,我们可以定义事件循环来简化使用轮询方法来监控事件,通俗的说 法就是「当 a 发生时,执行 b」。

  • @asyncio.coroutine 协程装饰器装饰
  • asyncio.sleep() 可以避免事件循环阻塞
  • get_event_loop() 获取事件循环
  • loop.run_until_complete() 监听事件循环
  • gather() 封装任务
  • await 等于 yield from 就是在等待 task 结果
import asyncio
@asyncio.coroutine # python3.5 之前 官网说3.10将被移除
def func1():
    for i in range(5):
        print('一边吃饭!!')
        yield from asyncio.sleep(0)
async def func2(): # python3.5以上
    for i in range(5):
        print('一边打游戏!!!')
        await asyncio.sleep(0)
if __name__ == "__main__":
    g1 = func1()
    g2 = func2()
    # 获取事件循环
    loop = asyncio.get_event_loop()
    # 监听事件循环
    loop.run_until_complete(asyncio.gather(g1,g2))
    # 关闭事件循环
    loop.close()

1、asyncio中的task的使用

import asyncio
import functools
async def compute(x,y):
    print(f'compute:{x}+{y}....')
    await asyncio.sleep(1)
    return x+y
async def print_sum(x,y):
    # 创建task
    task = asyncio.create_task(compute(x,y))        #python3.7以上写法
    # task绑定回调函数
    task.add_done_callback(functools.partial(end,x,y))  #python3.7以上写法
    # 释放下cpu的使用
    await asyncio.sleep(0)
    print('--------------------print_num继续执行---------------------------')
    for i in range(1000000):
        if i%5000 ==0:
            print(i)
            await asyncio.sleep(0.1)
def end(n,m,t):
    print(f'{n}+{m}={t.result()}')
if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(print_sum(1,2))
    loop.close()

五、总结

并行:指的是任务数小于等于 cpu 核数,即任务真的是一起执行的

并发:指的是任务数多余 cpu 核数,通过操作系统的各种任务调度算法,实现用多个任 务“一起”执行(实际上总有一些任务不在执行,因为切换任务的速度相当快,看上去一 起执行而已)

进程与线程的区别:

1. 线程是程序执行的最小单位,而进程是操作系统分配资源的最小单位;

2. 一个进程由一个或多个线程组成,线程是一个进程中代码的不同执行路线;

3. 进程之间相互独立,但同一进程下的各个线程之间共享程序的内存空间(包括代码段、 数据集、堆等)及一些进程级的资源(如打开文件和信号),某进程内的线程在其它进程 不可见;

4. 调度和切换:线程上下文切换比进程上下文切换要快得多。

进程、线程和协程的特点

进程:拥有自己独立的堆和栈,既不共享堆,也不共享栈,进程由操作系统调度;进程切换需要的资源很最大,效率很低

线程:拥有自己独立的栈和共享的堆,共享堆,不共享栈,标准线程由操作系统调度;线 程切换需要的资源一般,效率一般(当然了在不考虑 gil 的情况下)

协程:拥有自己独立的栈和共享的堆,共享堆,不共享栈,协程由程序员在协程的代码里 显示调度;协程切换任务资源很小,效率高

多进程、多线程根据 cpu 核数不一样可能是并行的,但是协程是在一个线程中 所以是并发

选择技术考虑的因素:切换的效率、数据共享的问题、 数据安全、是否需要并发

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注的更多内容!