欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

ThreadPoolExecutor源码翻译

程序员文章站 2022-04-19 11:02:00
...
/*
 * Oracle专有/机密。使用须遵守许可条款。
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */

/*
 *
 *
 *
 *
 *
 * 由Doug Lea在JCP JSR-166专家组成员的协助下编写, 
 * 并发布到公共领域, 解释在 
 * http://creativecommons.org/publicdomain/zero/1.0/ 
 */

package java.util.concurrent;
import java.util.concurrent.locks.AbstractQueuedSynchronizer;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.*;

/**
 * 一个{@link ExecutorService}执行其中一个已提交的任务,任务由池中可能的几个
 * 线程之一提交。一般配置用{@link Executors}工厂方法。
 *
 * <p>线程池强调两个不同的问题:它们通常提供改进的性能,当执行大数量的异步任务,
 * 通过减少每个任务的调用开销,且它们提供了一种方法来限定并管理资源,
 * 包含线程集,进行消费当执行一个集的任务。
 * 每个{@code ThreadPoolExecutor}同时维护一些基本的统计,比如完成的任务数。
 *
 * <p>考虑可用性通过一个大范围的上下文,该类提供了许多可调节的参数和可扩展的钩子。
 * 然而,程序员迫切使用更方便的{@link Executors}工厂方法 
 * {@link Executors#newCachedThreadPool}(无限的线程池,自动增加线程个数),
 * {@link Executors#newFixedThreadPool} (固定个数的线程池)
 * {@link Executors#newSingleThreadExecutor} (单个后台线程)
 * 这些预设置用于最常用的场景。 若非如此,使用下面的指导当需要手动配置和调节该类时:
 * 
 * <dl>
 *
 * <dt>核心和最大线程数</dt>
 *
 * <dd>一 {@code ThreadPoolExecutor} 将自动的调节线程数 (see {@link #getPoolSize})
 * 根据边界设定,通过核心线程数 (see {@link #getCorePoolSize}) 和
 * 最大线程数 (see {@link #getMaximumPoolSize}).
 *
 * 当一个新的任务提交于方法 {@link #execute(Runnable)},
 * 且小于核心池数的线程在运行, 一个新的线程被创建来处理请求,即使其他工作线程
 * 是空闲的。如果有超过核心池数但是少于最大池数的线程在运行,一个新的线程将
 * 只会在队列满时才会被创建。 通过设置核心池数和最大池数,你创建一个固定尺寸的
 * 线程池。通过设置最大池数给一个本质上无边界值比如{@code Integer.MAX_VALUE},
 * 你允许池容纳一个任意数量并发任务。 最典型的,核心和最大池尺寸只能基于上面的
 * 限制被设置,但是它们可能也会被动态改变使用 {@link #setCorePoolSize} 和
 * {@link #setMaximumPoolSize}</dd>
 *
 * <dt>按需构造</dt>
 *
 * <dd>默认,每个核心线程被初始创建并启动,只会在一个新的任务到达的时候,
 * 但是这可以被动态重写用方法{@link #prestartCoreThread}或者 {@link
 * #prestartAllCoreThreads}。 你可能会想预启动线程,如果你构建的池持有一个
 * 非空的队列</dd>
 * 
 * <dt>创建新线程</dt>
 *
 * <dd>新线程被创建用一个{@link ThreadFactory}。如无其他特别规定,一个
 * {@link Executors#defaultThreadFactory}可以用,其创建的线程会归为相同的
 * {@link ThreadGroup}以及相同{@code NORM_PRIORITY}优先级及非守护状态。
 * 通过提供一个不同的线程工程,你可以改变线程名,线程组,优先级,守护状态,等。
 * 如果一个{@code ThreadFactory}创建线程失败当返回null自{@code newThread},
 * 执行器将继续,但可能不能执行任何任务。线程可能处理"modifyThread" {@code 
 * RuntimePermission}.如果工作者线程或其他线程使用池确实没有处理这个使命,
 * 服务会被降级:配置改变可能不能及时的起作用,且关闭池会维护在一个状态,即关闭
 * 了但是没有完成。
 * </dd>
 * 
 * <dt>保持活跃时间</dt>
 *
 * <dd>If the pool currently has more than corePoolSize threads,
 * excess threads will be terminated if they have been idle for more
 * than the keepAliveTime (see {@link #getKeepAliveTime(TimeUnit)}).
 * This provides a means of reducing resource consumption when the
 * pool is not being actively used. If the pool becomes more active
 * later, new threads will be constructed. This parameter can also be
 * changed dynamically using method {@link #setKeepAliveTime(long,
 * TimeUnit)}.  Using a value of {@code Long.MAX_VALUE} {@link
 * TimeUnit#NANOSECONDS} effectively disables idle threads from ever
 * terminating prior to shut down. By default, the keep-alive policy
 * applies only when there are more than corePoolSize threads. But
 * method {@link #allowCoreThreadTimeOut(boolean)} can be used to
 * apply this time-out policy to core threads as well, so long as the
 * keepAliveTime value is non-zero. </dd>
 *
 * <dt>排队</dt>
 *
 * <dd>Any {@link BlockingQueue} may be used to transfer and hold
 * submitted tasks.  The use of this queue interacts with pool sizing:
 *
 * <ul>
 *
 * <li> If fewer than corePoolSize threads are running, the Executor
 * always prefers adding a new thread
 * rather than queuing.</li>
 *
 * <li> If corePoolSize or more threads are running, the Executor
 * always prefers queuing a request rather than adding a new
 * thread.</li>
 *
 * <li> If a request cannot be queued, a new thread is created unless
 * this would exceed maximumPoolSize, in which case, the task will be
 * rejected.</li>
 *
 * </ul>
 *
 * 三种一般排队策略:
 * <ol>
 *
 * <li> <em> Direct handoffs.</em> A good default choice for a work
 * queue is a {@link SynchronousQueue} that hands off tasks to threads
 * without otherwise holding them. Here, an attempt to queue a task
 * will fail if no threads are immediately available to run it, so a
 * new thread will be constructed. This policy avoids lockups when
 * handling sets of requests that might have internal dependencies.
 * Direct handoffs generally require unbounded maximumPoolSizes to
 * avoid rejection of new submitted tasks. This in turn admits the
 * possibility of unbounded thread growth when commands continue to
 * arrive on average faster than they can be processed.  </li>
 *
 * <li><em> 无限队列.</em> Using an unbounded queue (for
 * example a {@link LinkedBlockingQueue} without a predefined
 * capacity) will cause new tasks to wait in the queue when all
 * corePoolSize threads are busy. Thus, no more than corePoolSize
 * threads will ever be created. (And the value of the maximumPoolSize
 * therefore doesn't have any effect.)  This may be appropriate when
 * each task is completely independent of others, so tasks cannot
 * affect each others execution; for example, in a web page server.
 * While this style of queuing can be useful in smoothing out
 * transient bursts of requests, it admits the possibility of
 * unbounded work queue growth when commands continue to arrive on
 * average faster than they can be processed.  </li>
 *
 * <li><em>有限队列.</em> A bounded queue (for example, an
 * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
 * used with finite maximumPoolSizes, but can be more difficult to
 * tune and control.  Queue sizes and maximum pool sizes may be traded
 * off for each other: Using large queues and small pools minimizes
 * CPU usage, OS resources, and context-switching overhead, but can
 * lead to artificially low throughput.  If tasks frequently block (for
 * example if they are I/O bound), a system may be able to schedule
 * time for more threads than you otherwise allow. Use of small queues
 * generally requires larger pool sizes, which keeps CPUs busier but
 * may encounter unacceptable scheduling overhead, which also
 * decreases throughput.  </li>
 *
 * </ol>
 *
 * </dd>
 *
 * <dt>拒绝任务</dt>
 *
 * <dd>New tasks submitted in method {@link #execute(Runnable)} will be
 * <em>rejected</em> when the Executor has been shut down, and also when
 * the Executor uses finite bounds for both maximum threads and work queue
 * capacity, and is saturated.  In either case, the {@code execute} method
 * invokes the {@link
 * RejectedExecutionHandler#rejectedExecution(Runnable, ThreadPoolExecutor)}
 * method of its {@link RejectedExecutionHandler}.  Four predefined handler
 * policies are provided:
 *
 * <ol>
 *
 * <li> In the default {@link ThreadPoolExecutor.AbortPolicy}, the
 * handler throws a runtime {@link RejectedExecutionException} upon
 * rejection. </li>
 *
 * <li> In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
 * that invokes {@code execute} itself runs the task. This provides a
 * simple feedback control mechanism that will slow down the rate that
 * new tasks are submitted. </li>
 *
 * <li> In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
 * cannot be executed is simply dropped.  </li>
 *
 * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
 * executor is not shut down, the task at the head of the work queue
 * is dropped, and then execution is retried (which can fail again,
 * causing this to be repeated.) </li>
 *
 * </ol>
 *
 * It is possible to define and use other kinds of {@link
 * RejectedExecutionHandler} classes. Doing so requires some care
 * especially when policies are designed to work only under particular
 * capacity or queuing policies. </dd>
 *
 * <dt>钩子方法</dt>
 *
 * <dd>This class provides {@code protected} overridable
 * {@link #beforeExecute(Thread, Runnable)} and
 * {@link #afterExecute(Runnable, Throwable)} methods that are called
 * before and after execution of each task.  These can be used to
 * manipulate the execution environment; for example, reinitializing
 * ThreadLocals, gathering statistics, or adding log entries.
 * Additionally, method {@link #terminated} can be overridden to perform
 * any special processing that needs to be done once the Executor has
 * fully terminated.
 *
 * <p>If hook or callback methods throw exceptions, internal worker
 * threads may in turn fail and abruptly terminate.</dd>
 *
 * <dt>队列维护</dt>
 *
 * <dd>Method {@link #getQueue()} allows access to the work queue
 * for purposes of monitoring and debugging.  Use of this method for
 * any other purpose is strongly discouraged.  Two supplied methods,
 * {@link #remove(Runnable)} and {@link #purge} are available to
 * assist in storage reclamation when large numbers of queued tasks
 * become cancelled.</dd>
 *
 * <dt>收尾处理</dt>
 *
 * <dd>A pool that is no longer referenced in a program <em>AND</em>
 * has no remaining threads will be {@code shutdown} automatically. If
 * you would like to ensure that unreferenced pools are reclaimed even
 * if users forget to call {@link #shutdown}, then you must arrange
 * that unused threads eventually die, by setting appropriate
 * keep-alive times, using a lower bound of zero core threads and/or
 * setting {@link #allowCoreThreadTimeOut(boolean)}.  </dd>
 *
 * </dl>
 *
 * <p><b>扩展例子</b>. 大多数该类的扩展覆写一个或多个protected钩子方法。比如,
 * 下面的子类添加了一个简单的pause/resume(暂停/恢复)特性:
 *
 *  <pre> {@code
 * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
 *   private boolean isPaused;
 *   private ReentrantLock pauseLock = new ReentrantLock();
 *   private Condition unpaused = pauseLock.newCondition();
 *
 *   public PausableThreadPoolExecutor(...) { super(...); }
 *
 *   protected void beforeExecute(Thread t, Runnable r) {
 *     super.beforeExecute(t, r);
 *     pauseLock.lock();
 *     try {
 *       while (isPaused) unpaused.await();
 *     } catch (InterruptedException ie) {
 *       t.interrupt();
 *     } finally {
 *       pauseLock.unlock();
 *     }
 *   }
 *
 *   public void pause() {
 *     pauseLock.lock();
 *     try {
 *       isPaused = true;
 *     } finally {
 *       pauseLock.unlock();
 *     }
 *   }
 *
 *   public void resume() {
 *     pauseLock.lock();
 *     try {
 *       isPaused = false;
 *       unpaused.signalAll();
 *     } finally {
 *       pauseLock.unlock();
 *     }
 *   }
 * }}</pre>
 *
 * @since 1.5
 * @author Doug Lea
 */
public class ThreadPoolExecutor extends AbstractExecutorService {
    /**
     * 主要池控制状态,ctl,是一个原子整数包装了两个概念字段
     *     workerCount,指有效线程数
     *     runState,指是否运行,关闭等
     *
     * 为了将他们包装到一个int里,我们限制工作线程数在(2^29)-1(大约5亿)
     * 线程而不是(2^31)-1(2十亿)别的可表示的。如果将来这仍是一个问题,
     * 该变量可以被改为一个AtomicLong,且移位/屏蔽常数低于调整值。但在此之前,
     * 用int要快一点,简单一点
     *
     * workerCount是工作者的个数,工作者允许启动且不允许停止。 这个值会有
     * 瞬时的不同于实际存活的线程数,比如当一个线程工厂创建线程失败,和当退出
     * 线程仍在进行记录在终止之前。用户可见池尺寸报告为工作集当前尺寸。
     *
     * runState提供主要生命周期控制,管理着这些值:
     *
     *   RUNNING:  接收新任务并处理入队任务
     *   SHUTDOWN: 不接受新任务,但处理入队任务
     *   STOP:     不接受新任务,不处理入队任务,并中断处理中的任务。
     *   TIDYING:  结束所有任务,workerCount为0,线程转为状态TIDYING
     *             将执行terminated()钩子方法
     *   TERMINATED: terminated() 完成
     *
     * The numerical order among these values matters, to allow
     * ordered comparisons. The runState monotonically increases over
     * time, but need not hit each state. The transitions are:
     *
     * RUNNING -> SHUTDOWN
     *    On invocation of shutdown(), perhaps implicitly in finalize()
     * (RUNNING or SHUTDOWN) -> STOP
     *    On invocation of shutdownNow()
     * SHUTDOWN -> TIDYING
     *    When both queue and pool are empty
     * STOP -> TIDYING
     *    When pool is empty
     * TIDYING -> TERMINATED
     *    When the terminated() hook method has completed
     *
     * Threads waiting in awaitTermination() will return when the
     * state reaches TERMINATED.
     *
     * 检测从SHUTDOWN到TIDYING的转变,比你想要的更直接。 因为队列会从非空变空
     * 且反之亦然在SHUTDOWN状态下,但我们只能终结如果在看到它为空后,我们看到
     * workerCount为0(这有时候必要的做个复检--如下)
     */
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    private static final int COUNT_BITS = Integer.SIZE - 3;
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    // runState 存储于高位
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

    // 包装和开箱 ctl
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    private static int ctlOf(int rs, int wc) { return rs | wc; }

    /*
     * Bit字段访问器无需开箱ctl
     * 因为bit结构,及workerCount为非负数
     */

    private static boolean runStateLessThan(int c, int s) {
        return c < s;
    }

    private static boolean runStateAtLeast(int c, int s) {
        return c >= s;
    }

    private static boolean isRunning(int c) {
        return c < SHUTDOWN;
    }

    /**
     * 尝试比较并设置增加ctl的workerCount字段
     */
    private boolean compareAndIncrementWorkerCount(int expect) {
        return ctl.compareAndSet(expect, expect + 1);
    }

    /**
     * 尝试比较并设置减小ctl的workerCount字段
     */
    private boolean compareAndDecrementWorkerCount(int expect) {
        return ctl.compareAndSet(expect, expect - 1);
    }

    /**
     * 减小ctl的workerCount字段。这只在突然终止一个线程时(见processWorkerExit)被调用
     * 其他减小运行于getTask中
     */
    private void decrementWorkerCount() {
        do {} while (! compareAndDecrementWorkerCount(ctl.get()));
    }

    /**
     * The queue used for holding tasks and handing off to worker
     * threads.  We do not require that workQueue.poll() returning
     * null necessarily means that workQueue.isEmpty(), so rely
     * solely on isEmpty to see if the queue is empty (which we must
     * do for example when deciding whether to transition from
     * SHUTDOWN to TIDYING).  This accommodates special-purpose
     * queues such as DelayQueues for which poll() is allowed to
     * return null even if it may later return non-null when delays
     * expire.
     * 该队列用于持有任务并传递给工作者线程集。 我们要求workQueue.poll()不返回null
     * 必然需要通过workQueue.isEmpty()判断,所以单靠isEmpty看是否队列为
     * 空(我们必须这样,比如当决定是否从SHUTDOWN转变到TIDYING)。这兼容特定目的
     * 的队列,比如DelayQueues之于poll()允许返回null,即使当延迟到期它会晚一点
     * 返回非null
     */
    private final BlockingQueue<Runnable> workQueue;

    /**
     * Lock held on access to workers set and related bookkeeping.
     * While we could use a concurrent set of some sort, it turns out
     * to be generally preferable to use a lock. Among the reasons is
     * that this serializes interruptIdleWorkers, which avoids
     * unnecessary interrupt storms, especially during shutdown.
     * Otherwise exiting threads would concurrently interrupt those
     * that have not yet interrupted. It also simplifies some of the
     * associated statistics bookkeeping of largestPoolSize etc. We
     * also hold mainLock on shutdown and shutdownNow, for the sake of
     * ensuring workers set is stable while separately checking
     * permission to interrupt and actually interrupting.
     */
    private final ReentrantLock mainLock = new ReentrantLock();

    /**
     * Set containing all worker threads in pool. Accessed only when
     * holding mainLock.
     */
    private final HashSet<Worker> workers = new HashSet<Worker>();

    /**
     * Wait condition to support awaitTermination
     */
    private final Condition termination = mainLock.newCondition();

    /**
     * Tracks largest attained pool size. Accessed only under
     * mainLock.
     */
    private int largestPoolSize;

    /**
     * Counter for completed tasks. Updated only on termination of
     * worker threads. Accessed only under mainLock.
     */
    private long completedTaskCount;

    /*
     * All user control parameters are declared as volatiles so that
     * ongoing actions are based on freshest values, but without need
     * for locking, since no internal invariants depend on them
     * changing synchronously with respect to other actions.
     */

    /**
     * Factory for new threads. All threads are created using this
     * factory (via method addWorker).  All callers must be prepared
     * for addWorker to fail, which may reflect a system or user's
     * policy limiting the number of threads.  Even though it is not
     * treated as an error, failure to create threads may result in
     * new tasks being rejected or existing ones remaining stuck in
     * the queue.
     *
     * We go further and preserve pool invariants even in the face of
     * errors such as OutOfMemoryError, that might be thrown while
     * trying to create threads.  Such errors are rather common due to
     * the need to allocate a native stack in Thread.start, and users
     * will want to perform clean pool shutdown to clean up.  There
     * will likely be enough memory available for the cleanup code to
     * complete without encountering yet another OutOfMemoryError.
     */
    private volatile ThreadFactory threadFactory;

    /**
     * Handler called when saturated or shutdown in execute.
     */
    private volatile RejectedExecutionHandler handler;

    /**
     * Timeout in nanoseconds for idle threads waiting for work.
     * Threads use this timeout when there are more than corePoolSize
     * present or if allowCoreThreadTimeOut. Otherwise they wait
     * forever for new work.
     */
    private volatile long keepAliveTime;

    /**
     * If false (default), core threads stay alive even when idle.
     * If true, core threads use keepAliveTime to time out waiting
     * for work.
     */
    private volatile boolean allowCoreThreadTimeOut;

    /**
     * Core pool size is the minimum number of workers to keep alive
     * (and not allow to time out etc) unless allowCoreThreadTimeOut
     * is set, in which case the minimum is zero.
     */
    private volatile int corePoolSize;

    /**
     * Maximum pool size. Note that the actual maximum is internally
     * bounded by CAPACITY.
     */
    private volatile int maximumPoolSize;

    /**
     * The default rejected execution handler
     */
    private static final RejectedExecutionHandler defaultHandler =
        new AbortPolicy();

    /**
     * Permission required for callers of shutdown and shutdownNow.
     * We additionally require (see checkShutdownAccess) that callers
     * have permission to actually interrupt threads in the worker set
     * (as governed by Thread.interrupt, which relies on
     * ThreadGroup.checkAccess, which in turn relies on
     * SecurityManager.checkAccess). Shutdowns are attempted only if
     * these checks pass.
     *
     * All actual invocations of Thread.interrupt (see
     * interruptIdleWorkers and interruptWorkers) ignore
     * SecurityExceptions, meaning that the attempted interrupts
     * silently fail. In the case of shutdown, they should not fail
     * unless the SecurityManager has inconsistent policies, sometimes
     * allowing access to a thread and sometimes not. In such cases,
     * failure to actually interrupt threads may disable or delay full
     * termination. Other uses of interruptIdleWorkers are advisory,
     * and failure to actually interrupt will merely delay response to
     * configuration changes so is not handled exceptionally.
     */
    private static final RuntimePermission shutdownPerm =
        new RuntimePermission("modifyThread");

    /**
     * Class Worker mainly maintains interrupt control state for
     * threads running tasks, along with other minor bookkeeping.
     * This class opportunistically extends AbstractQueuedSynchronizer
     * to simplify acquiring and releasing a lock surrounding each
     * task execution.  This protects against interrupts that are
     * intended to wake up a worker thread waiting for a task from
     * instead interrupting a task being run.  We implement a simple
     * non-reentrant mutual exclusion lock rather than use
     * ReentrantLock because we do not want worker tasks to be able to
     * reacquire the lock when they invoke pool control methods like
     * setCorePoolSize.  Additionally, to suppress interrupts until
     * the thread actually starts running tasks, we initialize lock
     * state to a negative value, and clear it upon start (in
     * runWorker).
     */
    private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;

        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;
        /** Per-thread task counter */
        volatile long completedTasks;

        /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }

        /** Delegates main run loop to outer runWorker  */
        public void run() {
            runWorker(this);
        }

        // Lock methods
        //
        // The value 0 represents the unlocked state.
        // The value 1 represents the locked state.

        protected boolean isHeldExclusively() {
            return getState() != 0;
        }

        protected boolean tryAcquire(int unused) {
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }

        protected boolean tryRelease(int unused) {
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }

        public void lock()        { acquire(1); }
        public boolean tryLock()  { return tryAcquire(1); }
        public void unlock()      { release(1); }
        public boolean isLocked() { return isHeldExclusively(); }

        void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
        }
    }

    /*
     * Methods for setting control state
     */

    /**
     * Transitions runState to given target, or leaves it alone if
     * already at least the given target.
     *
     * @param targetState the desired state, either SHUTDOWN or STOP
     *        (but not TIDYING or TERMINATED -- use tryTerminate for that)
     */
    private void advanceRunState(int targetState) {
        for (;;) {
            int c = ctl.get();
            if (runStateAtLeast(c, targetState) ||
                ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
                break;
        }
    }

    /**
     * Transitions to TERMINATED state if either (SHUTDOWN and pool
     * and queue empty) or (STOP and pool empty).  If otherwise
     * eligible to terminate but workerCount is nonzero, interrupts an
     * idle worker to ensure that shutdown signals propagate. This
     * method must be called following any action that might make
     * termination possible -- reducing worker count or removing tasks
     * from the queue during shutdown. The method is non-private to
     * allow access from ScheduledThreadPoolExecutor.
     */
    final void tryTerminate() {
        for (;;) {
            int c = ctl.get();
            if (isRunning(c) ||
                runStateAtLeast(c, TIDYING) ||
                (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
                return;
            if (workerCountOf(c) != 0) { // Eligible to terminate
                interruptIdleWorkers(ONLY_ONE);
                return;
            }

            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
                    try {
                        terminated();
                    } finally {
                        ctl.set(ctlOf(TERMINATED, 0));
                        termination.signalAll();
                    }
                    return;
                }
            } finally {
                mainLock.unlock();
            }
            // else retry on failed CAS
        }
    }

    /*
     * Methods for controlling interrupts to worker threads.
     */

    /**
     * If there is a security manager, makes sure caller has
     * permission to shut down threads in general (see shutdownPerm).
     * If this passes, additionally makes sure the caller is allowed
     * to interrupt each worker thread. This might not be true even if
     * first check passed, if the SecurityManager treats some threads
     * specially.
     */
    private void checkShutdownAccess() {
        SecurityManager security = System.getSecurityManager();
        if (security != null) {
            security.checkPermission(shutdownPerm);
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                for (Worker w : workers)
                    security.checkAccess(w.thread);
            } finally {
                mainLock.unlock();
            }
        }
    }

    /**
     * Interrupts all threads, even if active. Ignores SecurityExceptions
     * (in which case some threads may remain uninterrupted).
     */
    private void interruptWorkers() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            for (Worker w : workers)
                w.interruptIfStarted();
        } finally {
            mainLock.unlock();
        }
    }

    /**
     * Interrupts threads that might be waiting for tasks (as
     * indicated by not being locked) so they can check for
     * termination or configuration changes. Ignores
     * SecurityExceptions (in which case some threads may remain
     * uninterrupted).
     *
     * @param onlyOne If true, interrupt at most one worker. This is
     * called only from tryTerminate when termination is otherwise
     * enabled but there are still other workers.  In this case, at
     * most one waiting worker is interrupted to propagate shutdown
     * signals in case all threads are currently waiting.
     * Interrupting any arbitrary thread ensures that newly arriving
     * workers since shutdown began will also eventually exit.
     * To guarantee eventual termination, it suffices to always
     * interrupt only one idle worker, but shutdown() interrupts all
     * idle workers so that redundant workers exit promptly, not
     * waiting for a straggler task to finish.
     */
    private void interruptIdleWorkers(boolean onlyOne) {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            for (Worker w : workers) {
                Thread t = w.thread;
                if (!t.isInterrupted() && w.tryLock()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    } finally {
                        w.unlock();
                    }
                }
                if (onlyOne)
                    break;
            }
        } finally {
            mainLock.unlock();
        }
    }

    /**
     * Common form of interruptIdleWorkers, to avoid having to
     * remember what the boolean argument means.
     */
    private void interruptIdleWorkers() {
        interruptIdleWorkers(false);
    }

    private static final boolean ONLY_ONE = true;

    /*
     * Misc utilities, most of which are also exported to
     * ScheduledThreadPoolExecutor
     */

    /**
     * Invokes the rejected execution handler for the given command.
     * Package-protected for use by ScheduledThreadPoolExecutor.
     */
    final void reject(Runnable command) {
        handler.rejectedExecution(command, this);
    }

    /**
     * Performs any further cleanup following run state transition on
     * invocation of shutdown.  A no-op here, but used by
     * ScheduledThreadPoolExecutor to cancel delayed tasks.
     */
    void onShutdown() {
    }

    /**
     * State check needed by ScheduledThreadPoolExecutor to
     * enable running tasks during shutdown.
     *
     * @param shutdownOK true if should return true if SHUTDOWN
     */
    final boolean isRunningOrShutdown(boolean shutdownOK) {
        int rs = runStateOf(ctl.get());
        return rs == RUNNING || (rs == SHUTDOWN && shutdownOK);
    }

    /**
     * Drains the task queue into a new list, normally using
     * drainTo. But if the queue is a DelayQueue or any other kind of
     * queue for which poll or drainTo may fail to remove some
     * elements, it deletes them one by one.
     */
    private List<Runnable> drainQueue() {
        BlockingQueue<Runnable> q = workQueue;
        ArrayList<Runnable> taskList = new ArrayList<Runnable>();
        q.drainTo(taskList);
        if (!q.isEmpty()) {
            for (Runnable r : q.toArray(new Runnable[0])) {
                if (q.remove(r))
                    taskList.add(r);
            }
        }
        return taskList;
    }

    /*
     * Methods for creating, running and cleaning up after workers
     */

    /**
     * Checks if a new worker can be added with respect to current
     * pool state and the given bound (either core or maximum). If so,
     * the worker count is adjusted accordingly, and, if possible, a
     * new worker is created and started, running firstTask as its
     * first task. This method returns false if the pool is stopped or
     * eligible to shut down. It also returns false if the thread
     * factory fails to create a thread when asked.  If the thread
     * creation fails, either due to the thread factory returning
     * null, or due to an exception (typically OutOfMemoryError in
     * Thread.start()), we roll back cleanly.
     *
     * @param firstTask the task the new thread should run first (or
     * null if none). Workers are created with an initial first task
     * (in method execute()) to bypass queuing when there are fewer
     * than corePoolSize threads (in which case we always start one),
     * or when the queue is full (in which case we must bypass queue).
     * Initially idle threads are usually created via
     * prestartCoreThread or to replace other dying workers.
     *
     * @param core if true use corePoolSize as bound, else
     * maximumPoolSize. (A boolean indicator is used here rather than a
     * value to ensure reads of fresh values after checking other pool
     * state).
     * @return true if successful
     */
    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

    /**
     * Rolls back the worker thread creation.
     * - removes worker from workers, if present
     * - decrements worker count
     * - rechecks for termination, in case the existence of this
     *   worker was holding up termination
     */
    private void addWorkerFailed(Worker w) {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            if (w != null)
                workers.remove(w);
            decrementWorkerCount();
            tryTerminate();
        } finally {
            mainLock.unlock();
        }
    }

    /**
     * Performs cleanup and bookkeeping for a dying worker. Called
     * only from worker threads. Unless completedAbruptly is set,
     * assumes that workerCount has already been adjusted to account
     * for exit.  This method removes thread from worker set, and
     * possibly terminates the pool or replaces the worker if either
     * it exited due to user task exception or if fewer than
     * corePoolSize workers are running or queue is non-empty but
     * there are no workers.
     *
     * @param w the worker
     * @param completedAbruptly if the worker died due to user exception
     */
    private void processWorkerExit(Worker w, boolean completedAbruptly) {
        if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
            decrementWorkerCount();

        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            completedTaskCount += w.completedTasks;
            workers.remove(w);
        } finally {
            mainLock.unlock();
        }

        tryTerminate();

        int c = ctl.get();
        if (runStateLessThan(c, STOP)) {
            if (!completedAbruptly) {
                int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
                if (min == 0 && ! workQueue.isEmpty())
                    min = 1;
                if (workerCountOf(c) >= min)
                    return; // replacement not needed
            }
            addWorker(null, false);
        }
    }

    /**
     * Performs blocking or timed wait for a task, depending on
     * current configuration settings, or returns null if this worker
     * must exit because of any of:
     * 1. There are more than maximumPoolSize workers (due to
     *    a call to setMaximumPoolSize).
     * 2. The pool is stopped.
     * 3. The pool is shutdown and the queue is empty.
     * 4. This worker timed out waiting for a task, and timed-out
     *    workers are subject to termination (that is,
     *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
     *    both before and after the timed wait, and if the queue is
     *    non-empty, this worker is not the last thread in the pool.
     *
     * @return task, or null if the worker must exit, in which case
     *         workerCount is decremented
     */
    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

    /**
     * Main worker run loop.  Repeatedly gets tasks from queue and
     * executes them, while coping with a number of issues:
     *
     * 1. We may start out with an initial task, in which case we
     * don't need to get the first one. Otherwise, as long as pool is
     * running, we get tasks from getTask. If it returns null then the
     * worker exits due to changed pool state or configuration
     * parameters.  Other exits result from exception throws in
     * external code, in which case completedAbruptly holds, which
     * usually leads processWorkerExit to replace this thread.
     *
     * 2. Before running any task, the lock is acquired to prevent
     * other pool interrupts while the task is executing, and then we
     * ensure that unless pool is stopping, this thread does not have
     * its interrupt set.
     *
     * 3. Each task run is preceded by a call to beforeExecute, which
     * might throw an exception, in which case we cause thread to die
     * (breaking loop with completedAbruptly true) without processing
     * the task.
     *
     * 4. Assuming beforeExecute completes normally, we run the task,
     * gathering any of its thrown exceptions to send to afterExecute.
     * We separately handle RuntimeException, Error (both of which the
     * specs guarantee that we trap) and arbitrary Throwables.
     * Because we cannot rethrow Throwables within Runnable.run, we
     * wrap them within Errors on the way out (to the thread's
     * UncaughtExceptionHandler).  Any thrown exception also
     * conservatively causes thread to die.
     *
     * 5. After task.run completes, we call afterExecute, which may
     * also throw an exception, which will also cause thread to
     * die. According to JLS Sec 14.20, this exception is the one that
     * will be in effect even if task.run throws.
     *
     * The net effect of the exception mechanics is that afterExecute
     * and the thread's UncaughtExceptionHandler have as accurate
     * information as we can provide about any problems encountered by
     * user code.
     *
     * @param w the worker
     */
    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

    // Public constructors and methods

    /**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters and default thread factory and rejected execution handler.
     * It may be more convenient to use one of the {@link Executors} factory
     * methods instead of this general purpose constructor.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @throws IllegalArgumentException if one of the following holds:<br>
     *         {@code corePoolSize < 0}<br>
     *         {@code keepAliveTime < 0}<br>
     *         {@code maximumPoolSize <= 0}<br>
     *         {@code maximumPoolSize < corePoolSize}
     * @throws NullPointerException if {@code workQueue} is null
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), defaultHandler);
    }

    /**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters and default rejected execution handler.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @param threadFactory the factory to use when the executor
     *        creates a new thread
     * @throws IllegalArgumentException if one of the following holds:<br>
     *         {@code corePoolSize < 0}<br>
     *         {@code keepAliveTime < 0}<br>
     *         {@code maximumPoolSize <= 0}<br>
     *         {@code maximumPoolSize < corePoolSize}
     * @throws NullPointerException if {@code workQueue}
     *         or {@code threadFactory} is null
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             threadFactory, defaultHandler);
    }

    /**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters and default thread factory.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @param handler the handler to use when execution is blocked
     *        because the thread bounds and queue capacities are reached
     * @throws IllegalArgumentException if one of the following holds:<br>
     *         {@code corePoolSize < 0}<br>
     *         {@code keepAliveTime < 0}<br>
     *         {@code maximumPoolSize <= 0}<br>
     *         {@code maximumPoolSize < corePoolSize}
     * @throws NullPointerException if {@code workQueue}
     *         or {@code handler} is null
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              RejectedExecutionHandler handler) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), handler);
    }

    /**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @param threadFactory the factory to use when the executor
     *        creates a new thread
     * @param handler the handler to use when execution is blocked
     *        because the thread bounds and queue capacities are reached
     * @throws IllegalArgumentException if one of the following holds:<br>
     *         {@code corePoolSize < 0}<br>
     *         {@code keepAliveTime < 0}<br>
     *         {@code maximumPoolSize <= 0}<br>
     *         {@code maximumPoolSize < corePoolSize}
     * @throws NullPointerException if {@code workQueue}
     *         or {@code threadFactory} or {@code handler} is null
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

    /**
     * Executes the given task sometime in the future.  The task
     * may execute in a new thread or in an existing pooled thread.
     *
     * If the task cannot be submitted for execution, either because this
     * executor has been shutdown or because its capacity has been reached,
     * the task is handled by the current {@code RejectedExecutionHandler}.
     *
     * @param command the task to execute
     * @throws RejectedExecutionException at discretion of
     *         {@code RejectedExecutionHandler}, if the task
     *         cannot be accepted for execution
     * @throws NullPointerException if {@code command} is null
     */
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }

    /**
     * Initiates an orderly shutdown in which previously submitted
     * tasks are executed, but no new tasks will be accepted.
     * Invocation has no additional effect if already shut down.
     *
     * <p>This method does not wait for previously submitted tasks to
     * complete execution.  Use {@link #awaitTermination awaitTermination}
     * to do that.
     *
     * @throws SecurityException {@inheritDoc}
     */
    public void shutdown() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            checkShutdownAccess();
            advanceRunState(SHUTDOWN);
            interruptIdleWorkers();
            onShutdown(); // hook for ScheduledThreadPoolExecutor
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
    }

    /**
     * Attempts to stop all actively executing tasks, halts the
     * processing of waiting tasks, and returns a list of the tasks
     * that were awaiting execution. These tasks are drained (removed)
     * from the task queue upon return from this method.
     *
     * <p>This method does not wait for actively executing tasks to
     * terminate.  Use {@link #awaitTermination awaitTermination} to
     * do that.
     *
     * <p>There are no guarantees beyond best-effort attempts to stop
     * processing actively executing tasks.  This implementation
     * cancels tasks via {@link Thread#interrupt}, so any task that
     * fails to respond to interrupts may never terminate.
     *
     * @throws SecurityException {@inheritDoc}
     */
    public List<Runnable> shutdownNow() {
        List<Runnable> tasks;
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            checkShutdownAccess();
            advanceRunState(STOP);
            interruptWorkers();
            tasks = drainQueue();
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
        return tasks;
    }

    public boolean isShutdown() {
        return ! isRunning(ctl.get());
    }

    /**
     * Returns true if this executor is in the process of terminating
     * after {@link #shutdown} or {@link #shutdownNow} but has not
     * completely terminated.  This method may be useful for
     * debugging. A return of {@code true} reported a sufficient
     * period after shutdown may indicate that submitted tasks have
     * ignored or suppressed interruption, causing this executor not
     * to properly terminate.
     *
     * @return {@code true} if terminating but not yet terminated
     */
    public boolean isTerminating() {
        int c = ctl.get();
        return ! isRunning(c) && runStateLessThan(c, TERMINATED);
    }

    public boolean isTerminated() {
        return runStateAtLeast(ctl.get(), TERMINATED);
    }

    public boolean awaitTermination(long timeout, TimeUnit unit)
        throws InterruptedException {
        long nanos = unit.toNanos(timeout);
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            for (;;) {
                if (runStateAtLeast(ctl.get(), TERMINATED))
                    return true;
                if (nanos <= 0)
                    return false;
                nanos = termination.awaitNanos(nanos);
            }
        } finally {
            mainLock.unlock();
        }
    }

    /**
     * Invokes {@code shutdown} when this executor is no longer
     * referenced and it has no threads.
     */
    protected void finalize() {
        shutdown();
    }

    /**
     * Sets the thread factory used to create new threads.
     *
     * @param threadFactory the new thread factory
     * @throws NullPointerException if threadFactory is null
     * @see #getThreadFactory
     */
    public void setThreadFactory(ThreadFactory threadFactory) {
        if (threadFactory == null)
            throw new NullPointerException();
        this.threadFactory = threadFactory;
    }

    /**
     * Returns the thread factory used to create new threads.
     *
     * @return the current thread factory
     * @see #setThreadFactory(ThreadFactory)
     */
    public ThreadFactory getThreadFactory() {
        return threadFactory;
    }

    /**
     * Sets a new handler for unexecutable tasks.
     *
     * @param handler the new handler
     * @throws NullPointerException if handler is null
     * @see #getRejectedExecutionHandler
     */
    public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
        if (handler == null)
            throw new NullPointerException();
        this.handler = handler;
    }

    /**
     * Returns the current handler for unexecutable tasks.
     *
     * @return the current handler
     * @see #setRejectedExecutionHandler(RejectedExecutionHandler)
     */
    public RejectedExecutionHandler getRejectedExecutionHandler() {
        return handler;
    }

    /**
     * Sets the core number of threads.  This overrides any value set
     * in the constructor.  If the new value is smaller than the
     * current value, excess existing threads will be terminated when
     * they next become idle.  If larger, new threads will, if needed,
     * be started to execute any queued tasks.
     *
     * @param corePoolSize the new core size
     * @throws IllegalArgumentException if {@code corePoolSize < 0}
     * @see #getCorePoolSize
     */
    public void setCorePoolSize(int corePoolSize) {
        if (corePoolSize < 0)
            throw new IllegalArgumentException();
        int delta = corePoolSize - this.corePoolSize;
        this.corePoolSize = corePoolSize;
        if (workerCountOf(ctl.get()) > corePoolSize)
            interruptIdleWorkers();
        else if (delta > 0) {
            // We don't really know how many new threads are "needed".
            // As a heuristic, prestart enough new workers (up to new
            // core size) to handle the current number of tasks in
            // queue, but stop if queue becomes empty while doing so.
            int k = Math.min(delta, workQueue.size());
            while (k-- > 0 && addWorker(null, true)) {
                if (workQueue.isEmpty())
                    break;
            }
        }
    }

    /**
     * Returns the core number of threads.
     *
     * @return the core number of threads
     * @see #setCorePoolSize
     */
    public int getCorePoolSize() {
        return corePoolSize;
    }

    /**
     * Starts a core thread, causing it to idly wait for work. This
     * overrides the default policy of starting core threads only when
     * new tasks are executed. This method will return {@code false}
     * if all core threads have already been started.
     *
     * @return {@code true} if a thread was started
     */
    public boolean prestartCoreThread() {
        return workerCountOf(ctl.get()) < corePoolSize &&
            addWorker(null, true);
    }

    /**
     * Same as prestartCoreThread except arranges that at least one
     * thread is started even if corePoolSize is 0.
     */
    void ensurePrestart() {
        int wc = workerCountOf(ctl.get());
        if (wc < corePoolSize)
            addWorker(null, true);
        else if (wc == 0)
            addWorker(null, false);
    }

    /**
     * Starts all core threads, causing them to idly wait for work. This
     * overrides the default policy of starting core threads only when
     * new tasks are executed.
     *
     * @return the number of threads started
     */
    public int prestartAllCoreThreads() {
        int n = 0;
        while (addWorker(null, true))
            ++n;
        return n;
    }

    /**
     * Returns true if this pool allows core threads to time out and
     * terminate if no tasks arrive within the keepAlive time, being
     * replaced if needed when new tasks arrive. When true, the same
     * keep-alive policy applying to non-core threads applies also to
     * core threads. When false (the default), core threads are never
     * terminated due to lack of incoming tasks.
     *
     * @return {@code true} if core threads are allowed to time out,
     *         else {@code false}
     *
     * @since 1.6
     */
    public boolean allowsCoreThreadTimeOut() {
        return allowCoreThreadTimeOut;
    }

    /**
     * Sets the policy governing whether core threads may time out and
     * terminate if no tasks arrive within the keep-alive time, being
     * replaced if needed when new tasks arrive. When false, core
     * threads are never terminated due to lack of incoming
     * tasks. When true, the same keep-alive policy applying to
     * non-core threads applies also to core threads. To avoid
     * continual thread replacement, the keep-alive time must be
     * greater than zero when setting {@code true}. This method
     * should in general be called before the pool is actively used.
     *
     * @param value {@code true} if should time out, else {@code false}
     * @throws IllegalArgumentException if value is {@code true}
     *         and the current keep-alive time is not greater than zero
     *
     * @since 1.6
     */
    public void allowCoreThreadTimeOut(boolean value) {
        if (value && keepAliveTime <= 0)
            throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
        if (value != allowCoreThreadTimeOut) {
            allowCoreThreadTimeOut = value;
            if (value)
                interruptIdleWorkers();
        }
    }

    /**
     * Sets the maximum allowed number of threads. This overrides any
     * value set in the constructor. If the new value is smaller than
     * the current value, excess existing threads will be
     * terminated when they next become idle.
     *
     * @param maximumPoolSize the new maximum
     * @throws IllegalArgumentException if the new maximum is
     *         less than or equal to zero, or
     *         less than the {@linkplain #getCorePoolSize core pool size}
     * @see #getMaximumPoolSize
     */
    public void setMaximumPoolSize(int maximumPoolSize) {
        if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
            throw new IllegalArgumentException();
        this.maximumPoolSize = maximumPoolSize;
        if (workerCountOf(ctl.get()) > maximumPoolSize)
            interruptIdleWorkers();
    }

    /**
     * Returns the maximum allowed number of threads.
     *
     * @return the maximum allowed number of threads
     * @see #setMaximumPoolSize
     */
    public int getMaximumPoolSize() {
        return maximumPoolSize;
    }

    /**
     * Sets the time limit for which threads may remain idle before
     * being terminated.  If there are more than the core number of
     * threads currently in the pool, after waiting this amount of
     * time without processing a task, excess threads will be
     * terminated.  This overrides any value set in the constructor.
     *
     * @param time the time to wait.  A time value of zero will cause
     *        excess threads to terminate immediately after executing tasks.
     * @param unit the time unit of the {@code time} argument
     * @throws IllegalArgumentException if {@code time} less than zero or
     *         if {@code time} is zero and {@code allowsCoreThreadTimeOut}
     * @see #getKeepAliveTime(TimeUnit)
     */
    public void setKeepAliveTime(long time, TimeUnit unit) {
        if (time < 0)
            throw new IllegalArgumentException();
        if (time == 0 && allowsCoreThreadTimeOut())
            throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
        long keepAliveTime = unit.toNanos(time);
        long delta = keepAliveTime - this.keepAliveTime;
        this.keepAliveTime = keepAliveTime;
        if (delta < 0)
            interruptIdleWorkers();
    }

    /**
     * Returns the thread keep-alive time, which is the amount of time
     * that threads in excess of the core pool size may remain
     * idle before being terminated.
     *
     * @param unit the desired time unit of the result
     * @return the time limit
     * @see #setKeepAliveTime(long, TimeUnit)
     */
    public long getKeepAliveTime(TimeUnit unit) {
        return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
    }

    /* User-level queue utilities */

    /**
     * Returns the task queue used by this executor. Access to the
     * task queue is intended primarily for debugging and monitoring.
     * This queue may be in active use.  Retrieving the task queue
     * does not prevent queued tasks from executing.
     *
     * @return the task queue
     */
    public BlockingQueue<Runnable> getQueue() {
        return workQueue;
    }

    /**
     * Removes this task from the executor's internal queue if it is
     * present, thus causing it not to be run if it has not already
     * started.
     *
     * <p>This method may be useful as one part of a cancellation
     * scheme.  It may fail to remove tasks that have been converted
     * into other forms before being placed on the internal queue. For
     * example, a task entered using {@code submit} might be
     * converted into a form that maintains {@code Future} status.
     * However, in such cases, method {@link #purge} may be used to
     * remove those Futures that have been cancelled.
     *
     * @param task the task to remove
     * @return {@code true} if the task was removed
     */
    public boolean remove(Runnable task) {
        boolean removed = workQueue.remove(task);
        tryTerminate(); // In case SHUTDOWN and now empty
        return removed;
    }

    /**
     * Tries to remove from the work queue all {@link Future}
     * tasks that have been cancelled. This method can be useful as a
     * storage reclamation operation, that has no other impact on
     * functionality. Cancelled tasks are never executed, but may
     * accumulate in work queues until worker threads can actively
     * remove them. Invoking this method instead tries to remove them now.
     * However, this method may fail to remove tasks in
     * the presence of interference by other threads.
     */
    public void purge() {
        final BlockingQueue<Runnable> q = workQueue;
        try {
            Iterator<Runnable> it = q.iterator();
            while (it.hasNext()) {
                Runnable r = it.next();
                if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
                    it.remove();
            }
        } catch (ConcurrentModificationException fallThrough) {
            // Take slow path if we encounter interference during traversal.
            // Make copy for traversal and call remove for cancelled entries.
            // The slow path is more likely to be O(N*N).
            for (Object r : q.toArray())
                if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
                    q.remove(r);
        }

        tryTerminate(); // In case SHUTDOWN and now empty
    }

    /* Statistics */

    /**
     * Returns the current number of threads in the pool.
     *
     * @return the number of threads
     */
    public int getPoolSize() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            // Remove rare and surprising possibility of
            // isTerminated() && getPoolSize() > 0
            return runStateAtLeast(ctl.get(), TIDYING) ? 0
                : workers.size();
        } finally {
            mainLock.unlock();
        }
    }

    /**
     * Returns the approximate number of threads that are actively
     * executing tasks.
     *
     * @return the number of threads
     */
    public int getActiveCount() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            int n = 0;
            for (Worker w : workers)
                if (w.isLocked())
                    ++n;
            return n;
        } finally {
            mainLock.unlock();
        }
    }

    /**
     * Returns the largest number of threads that have ever
     * simultaneously been in the pool.
     *
     * @return the number of threads
     */
    public int getLargestPoolSize() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            return largestPoolSize;
        } finally {
            mainLock.unlock();
        }
    }

    /**
     * Returns the approximate total number of tasks that have ever been
     * scheduled for execution. Because the states of tasks and
     * threads may change dynamically during computation, the returned
     * value is only an approximation.
     *
     * @return the number of tasks
     */
    public long getTaskCount() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            long n = completedTaskCount;
            for (Worker w : workers) {
                n += w.completedTasks;
                if (w.isLocked())
                    ++n;
            }
            return n + workQueue.size();
        } finally {
            mainLock.unlock();
        }
    }

    /**
     * Returns the approximate total number of tasks that have
     * completed execution. Because the states of tasks and threads
     * may change dynamically during computation, the returned value
     * is only an approximation, but one that does not ever decrease
     * across successive calls.
     *
     * @return the number of tasks
     */
    public long getCompletedTaskCount() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            long n = completedTaskCount;
            for (Worker w : workers)
                n += w.completedTasks;
            return n;
        } finally {
            mainLock.unlock();
        }
    }

    /**
     * Returns a string identifying this pool, as well as its state,
     * including indications of run state and estimated worker and
     * task counts.
     *
     * @return a string identifying this pool, as well as its state
     */
    public String toString() {
        long ncompleted;
        int nworkers, nactive;
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            ncompleted = completedTaskCount;
            nactive = 0;
            nworkers = workers.size();
            for (Worker w : workers) {
                ncompleted += w.completedTasks;
                if (w.isLocked())
                    ++nactive;
            }
        } finally {
            mainLock.unlock();
        }
        int c = ctl.get();
        String rs = (runStateLessThan(c, SHUTDOWN) ? "Running" :
                     (runStateAtLeast(c, TERMINATED) ? "Terminated" :
                      "Shutting down"));
        return super.toString() +
            "[" + rs +
            ", pool size = " + nworkers +
            ", active threads = " + nactive +
            ", queued tasks = " + workQueue.size() +
            ", completed tasks = " + ncompleted +
            "]";
    }

    /* Extension hooks */

    /**
     * Method invoked prior to executing the given Runnable in the
     * given thread.  This method is invoked by thread {@code t} that
     * will execute task {@code r}, and may be used to re-initialize
     * ThreadLocals, or to perform logging.
     *
     * <p>This implementation does nothing, but may be customized in
     * subclasses. Note: To properly nest multiple overridings, subclasses
     * should generally invoke {@code super.beforeExecute} at the end of
     * this method.
     *
     * @param t the thread that will run task {@code r}
     * @param r the task that will be executed
     */
    protected void beforeExecute(Thread t, Runnable r) { }

    /**
     * Method invoked upon completion of execution of the given Runnable.
     * This method is invoked by the thread that executed the task. If
     * non-null, the Throwable is the uncaught {@code RuntimeException}
     * or {@code Error} that caused execution to terminate abruptly.
     *
     * <p>This implementation does nothing, but may be customized in
     * subclasses. Note: To properly nest multiple overridings, subclasses
     * should generally invoke {@code super.afterExecute} at the
     * beginning of this method.
     *
     * <p><b>Note:</b> When actions are enclosed in tasks (such as
     * {@link FutureTask}) either explicitly or via methods such as
     * {@code submit}, these task objects catch and maintain
     * computational exceptions, and so they do not cause abrupt
     * termination, and the internal exceptions are <em>not</em>
     * passed to this method. If you would like to trap both kinds of
     * failures in this method, you can further probe for such cases,
     * as in this sample subclass that prints either the direct cause
     * or the underlying exception if a task has been aborted:
     *
     *  <pre> {@code
     * class ExtendedExecutor extends ThreadPoolExecutor {
     *   // ...
     *   protected void afterExecute(Runnable r, Throwable t) {
     *     super.afterExecute(r, t);
     *     if (t == null && r instanceof Future<?>) {
     *       try {
     *         Object result = ((Future<?>) r).get();
     *       } catch (CancellationException ce) {
     *           t = ce;
     *       } catch (ExecutionException ee) {
     *           t = ee.getCause();
     *       } catch (InterruptedException ie) {
     *           Thread.currentThread().interrupt(); // ignore/reset
     *       }
     *     }
     *     if (t != null)
     *       System.out.println(t);
     *   }
     * }}</pre>
     *
     * @param r the runnable that has completed
     * @param t the exception that caused termination, or null if
     * execution completed normally
     */
    protected void afterExecute(Runnable r, Throwable t) { }

    /**
     * Method invoked when the Executor has terminated.  Default
     * implementation does nothing. Note: To properly nest multiple
     * overridings, subclasses should generally invoke
     * {@code super.terminated} within this method.
     */
    protected void terminated() { }

    /* Predefined RejectedExecutionHandlers */

    /**
     * A handler for rejected tasks that runs the rejected task
     * directly in the calling thread of the {@code execute} method,
     * unless the executor has been shut down, in which case the task
     * is discarded.
     */
    public static class CallerRunsPolicy implements RejectedExecutionHandler {
        /**
         * Creates a {@code CallerRunsPolicy}.
         */
        public CallerRunsPolicy() { }

        /**
         * Executes task r in the caller's thread, unless the executor
         * has been shut down, in which case the task is discarded.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                r.run();
            }
        }
    }

    /**
     * A handler for rejected tasks that throws a
     * {@code RejectedExecutionException}.
     */
    public static class AbortPolicy implements RejectedExecutionHandler {
        /**
         * Creates an {@code AbortPolicy}.
         */
        public AbortPolicy() { }

        /**
         * Always throws RejectedExecutionException.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         * @throws RejectedExecutionException always
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            throw new RejectedExecutionException("Task " + r.toString() +
                                                 " rejected from " +
                                                 e.toString());
        }
    }

    /**
     * A handler for rejected tasks that silently discards the
     * rejected task.
     */
    public static class DiscardPolicy implements RejectedExecutionHandler {
        /**
         * Creates a {@code DiscardPolicy}.
         */
        public DiscardPolicy() { }

        /**
         * Does nothing, which has the effect of discarding task r.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        }
    }

    /**
     * A handler for rejected tasks that discards the oldest unhandled
     * request and then retries {@code execute}, unless the executor
     * is shut down, in which case the task is discarded.
     */
    public static class DiscardOldestPolicy implements RejectedExecutionHandler {
        /**
         * Creates a {@code DiscardOldestPolicy} for the given executor.
         */
        public DiscardOldestPolicy() { }

        /**
         * Obtains and ignores the next task that the executor
         * would otherwise execute, if one is immediately available,
         * and then retries execution of task r, unless the executor
         * is shut down, in which case task r is instead discarded.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                e.getQueue().poll();
                e.execute(r);
            }
        }
    }
}