欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Redis 面试题汇总

程序员文章站 2022-04-18 08:26:18
...

目录

简介

Redis 持久化机制

RDB(Redis DataBase)

AOF(Append-only file)

Redis 4.0 对于持久化机制的优化

补充:AOF 重写

二者的区别

二者优缺点

Memcache与Redis的区别都有哪些?

缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级等问题

1.缓存雪崩

2.缓存穿透

Bitmap

布隆过滤器(推荐)

3.缓存预热

4.缓存更新

5.缓存降级

热点数据和冷数据是什么

redis的数据类型,以及每种数据类型的使用场景

(一)String

(二)hash

(三)list

(四)set

(五)sorted set

Redis 内部结构

redis的过期策略以及内存淘汰机制

过期策略

淘汰策略

Redis 是单线程的

单线程的redis为什么这么快

其它开源软件采用的模型

Redis线程模型

​为什么Redis的操作是原子性的,怎么保证原子性的?

多个命令在并发中也是原子性的吗?

Redis 有哪些架构模式?讲讲各自的特点

单机版

主从复制

哨兵(2.8版本或更高才有)

集群(proxy 型):

集群(直连型):

集群特点比较

Redis事务

如何解决 Redis 的并发竞争 Key 问题

如何保证缓存与数据库双写时的数据一致性?

其他问题


简介

Redis 是一个开源的使用 ANSI C 语言编写、遵守 BSD 协议、支持网络、可基于内存亦可持久化的日志型、Key-Value 数据库,并提供多种语言的 API的非关系型数据库。

传统数据库遵循 ACID 规则。而 Nosql(Not Only SQL 的缩写,是对不同于传统的关系型数据库的数据库管理系统的统称) 一般为分布式而分布式一般遵循 CAP 定理。Redis是nosql(也是个巨大的map) 单线程,但是可处理1秒10w的并发(数据都在内存中)

Github 源码:https://github.com/antirez/redis

Redis 官网:https://redis.io/

简单来说 redis 就是一个数据库,不过与传统数据库不同的是 redis 的数据是存在内存中的,所以读写速度非常快,因此 redis 被广泛应用于缓存方向。另外,redis 也经常用来做分布式锁。redis 提供了多种数据类型来支持不同的业务场景。除此之外,redis 支持事务 、持久化、LUA脚本、LRU驱动事件、多种集群方案。

Redis是一个 key-value 存储系统。和 Memcached 类似,它支持存储的 value 类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set –有序集合)和hash(哈希类型)。这些数据类型都支持 push/pop、add/remove 及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。

Redis 持久化机制

Redis是一个支持持久化的内存数据库,通过持久化机制把内存中的数据同步到硬盘文件来保证数据持久化。当Redis重启后通过把硬盘文件重新加载到内存,就能达到恢复数据的目的。

很多时候我们需要持久化数据也就是将内存中的数据写入到硬盘里面,大部分原因是为了之后重用数据(比如重启机器、机器故障之后恢复数据),或者是为了防止系统故障而将数据备份到一个远程位置。

实现:单独创建fork()一个子进程,将当前父进程的数据库数据复制到子进程的内存中,然后由子进程写入到临时文件中,持久化的过程结束了,再用这个临时文件替换上次的快照文件,然后子进程退出,内存释放。

RDB(Redis DataBase)

RDB是Redis默认的持久化方式。按照一定的时间周期策略把内存的数据以快照的形式保存到硬盘的二进制文件。即Snapshot快照存储,对应产生的数据文件为dump.rdb,通过配置文件中的save参数来定义快照的周期。( 快照可以是其所表示的数据的一个副本,也可以是数据的一个复制品。)

Redis创建快照之后,可以对快照进行备份,可以将快照复制到其他服务器从而创建具有相同数据的服务器副本(Redis主从结构,主要用来提高Redis性能),还可以将快照留在原地以便重启服务器的时候使用。

在redis.conf配置文件中默认有此下配置:

save 900 1       # 在900秒(15分钟)之后,如果至少有1个key发生变化,Redis就会自动触发BGSAVE命令创建快照。
save 300 10      # 在300秒(5分钟)之后,如果至少有10个key发生变化,Redis就会自动触发BGSAVE命令创建快照。
save 60 10000    # 在60秒(1分钟)之后,如果至少有10000个key发生变化,Redis就会自动触发BGSAVE命令创建快照。

AOF(Append-only file)

AOF:Redis会将每一个收到的写命令都通过Write函数追加到文件最后,类似于MySQL的binlog。当Redis重启是会通过重新执行文件中保存的写命令来在内存中重建整个数据库的内容。默认情况下Redis没有开启AOF(append only file)方式的持久化,可以通过appendonly参数开启:

appendonly yes

开启AOF持久化后每执行一条会更改Redis中的数据的命令,Redis就会将该命令写入硬盘中的AOF文件。AOF文件的保存位置和RDB文件的位置相同,都是通过dir参数设置的,默认的文件名是appendonly.aof。

在Redis的配置文件中存在三种不同的 AOF 持久化方式,它们分别是:

appendfsync always    # 每次有数据修改发生时都会写入AOF文件,这样会严重降低Redis的速度
appendfsync everysec  # 每秒钟同步一次,显示地将多个写命令同步到硬盘
appendfsync no        # 让操作系统决定何时进行同步

当两种方式同时开启时,数据恢复Redis会优先选择AOF恢复。

Redis 4.0 对于持久化机制的优化

Redis 4.0 开始支持 RDB 和 AOF 的混合持久化(默认关闭,可以通过配置项 aof-use-rdb-preamble 开启)。

如果把混合持久化打开,AOF 重写的时候就直接把 RDB 的内容写到 AOF 文件开头。这样做的好处是可以结合 RDB 和 AOF 的优点, 快速加载同时避免丢失过多的数据。当然缺点也是有的, AOF 里面的 RDB 部分是压缩格式不再是 AOF 格式,可读性较差。

补充:AOF 重写

AOF重写可以产生一个新的AOF文件,这个新的AOF文件和原有的AOF文件所保存的数据库状态一样,但体积更小。

AOF重写是一个有歧义的名字,该功能是通过读取数据库中的键值对来实现的,程序无须对现有AOF文件进行任何读入、分析或者写入操作。

在执行 BGREWRITEAOF 命令时,Redis 服务器会维护一个 AOF 重写缓冲区,该缓冲区会在子进程创建新AOF文件期间,记录服务器执行的所有写命令。当子进程完成创建新AOF文件的工作之后,服务器会将重写缓冲区中的所有内容追加到新AOF文件的末尾,使得新旧两个AOF文件所保存的数据库状态一致。最后,服务器用新的AOF文件替换旧的AOF文件,以此来完成AOF文件重写操作

二者的区别

  • RDB持久化是指在指定的时间间隔内将内存中的数据集快照写入磁盘,实际操作过程是fork一个子进程,先将数据集写入临时文件,写入成功后,再替换之前的文件,用二进制压缩存储。
  • AOF持久化以日志的形式记录服务器所处理的每一个写、删除操作,查询操作不会记录,以文本的方式记录,可以打开文件看到详细的操作记录。

二者优缺点

RDB优势

  1.  一旦采用该方式,那么你的整个Redis数据库将只包含一个文件,这对于文件备份而言是非常完美的。比如,你可能打算每个小时归档一次最近24小时的数据,同时还要每天归档一次最近30天的数据。通过这样的备份策略,一旦系统出现灾难性故障,我们可以非常容易的进行恢复。
  2. 对于灾难恢复而言,RDB是非常不错的选择。因为我们可以非常轻松的将一个单独的文件压缩后再转移到其它存储介质上。
  3.  性能最大化。对于Redis的服务进程而言,在开始持久化时,它唯一需要做的只是fork出子进程,之后再由子进程完成这些持久化的工作,这样就可以极大的避免服务进程执行IO操作了。
  4.  相比于AOF机制,如果数据集很大,RDB的启动效率会更高。

RDB劣势

  1. 如果你想保证数据的高可用性,即最大限度的避免数据丢失,那么RDB将不是一个很好的选择。因为系统一旦在定时持久化之前出现宕机现象,此前没有来得及写入磁盘的数据都将丢失。
  2. 由于RDB是通过fork子进程来协助完成数据持久化工作的,因此,如果当数据集较大时,可能会导致整个服务器停止服务几百毫秒,甚至是1秒钟。

AOF优势

  1. 该机制可以带来更高的数据安全性,即数据持久性。Redis中提供了3中同步策略,即每秒同步、每修改同步和不同步。事实上,每秒同步也是异步完成的,其效率也是非常高的,所差的是一旦系统出现宕机现象,那么这一秒钟之内修改的数据将会丢失。而每修改同步,我们可以将其视为同步持久化,即每次发生的数据变化都会被立即记录到磁盘中。可以预见,这种方式在效率上是最低的。至于无同步,无需多言,我想大家都能正确的理解它。
  2. 由于该机制对日志文件的写入操作采用的是append模式,因此在写入过程中即使出现宕机现象,也不会破坏日志文件中已经存在的内容。然而如果我们本次操作只是写入了一半数据就出现了系统崩溃问题,不用担心,在Redis下一次启动之前,我们可以通过redis-check-aof工具来帮助我们解决数据一致性的问题。
  3. 如果日志过大,Redis可以自动启用rewrite机制。即Redis以append模式不断的将修改数据写入到老的磁盘文件中,同时Redis还会创建一个新的文件用于记录此期间有哪些修改命令被执行。因此在进行rewrite切换时可以更好的保证数据安全性。
  4. AOF包含一个格式清晰、易于理解的日志文件用于记录所有的修改操作。事实上,我们也可以通过该文件完成数据的重建。

AOF劣势

  1. 对于相同数量的数据集而言,AOF文件通常要大于RDB文件。RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。
  2. 根据同步策略的不同,AOF在运行效率上往往会慢于RDB。总之,每秒同步策略的效率是比较高的,同步禁用策略的效率和RDB一样高效。

二者选择的标准,就是看系统是愿意牺牲一些性能,换取更高的缓存一致性(aof),还是愿意写操作频繁的时候,不启用备份来换取更高的性能,待手动运行save的时候,再做备份(rdb)。rdb这个就更有些 eventually consistent的意思了。不过生产环境其实更多都是二者结合使用的。

Memcache与Redis的区别都有哪些?

  • 1)、存储方式 Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。 Redis有部份存在硬盘上,redis可以持久化其数据
  • 2)、数据支持类型 memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型 ,提供list,set,zset,hash等数据结构的存储
  • 3)、使用底层模型不同 它们之间底层实现方式 以及与客户端之间通信的应用协议不一样。 Redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求。
  • 4). value 值大小不同:Redis 最大可以达到 1gb;memcache 只有 1mb。
  • 5)redis的速度比memcached快很多
  • 6)Redis支持数据的备份,即master-slave模式的数据备份。
  • 7)Memcached是多线程,非阻塞IO复用的网络模型;Redis使用单线程的多路 IO 复用模型

Redis 面试题汇总

缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级等问题

1.缓存雪崩

缓存雪崩我们可以简单的理解为:由于原有缓存失效,新缓存未到期间

(例如:我们设置缓存时采用了相同的过期时间,在同一时刻出现大面积的缓存过期),所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机。从而形成一系列连锁反应,造成整个系统崩溃。
解决办法:

大多数系统设计者考虑用加锁( 最多的解决方案)或者队列的方式保证来保证不会有大量的线程对数据库一次性进行读写,从而避免失效时大量的并发请求落到底层存储系统上。还有一个简单方案就时讲缓存失效时间分散开。尽量保证整个 redis 集群的高可用性,发现机器宕机尽快补上。选择合适的内存淘汰策略。

2.缓存穿透

缓存穿透是指用户查询数据,在数据库没有,自然在缓存中也不会有。这样就导致用户查询的时候,在缓存中找不到,每次都要去数据库再查询一遍,然后返回空(相当于进行了两次无用的查询)。这样请求就绕过缓存直接查数据库,这也是经常提的缓存命中率问题。

解决办法;

最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。

另外也有一个更为简单粗暴的方法,如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。通过这个直接设置的默认值存放到缓存,这样第二次到缓冲中获取就有值了,而不会继续访问数据库,这种办法最简单粗暴。

5TB的硬盘上放满了数据,请写一个算法将这些数据进行排重。如果这些数据是一些32bit大小的数据该如何解决?如果是64bit的呢?

对于空间的利用到达了一种极致,那就是Bitmap和布隆过滤器(Bloom Filter)。

Bitmap

Bitmap: 典型的就是哈希表。缺点是,Bitmap对于每个元素只能记录1bit信息,如果还想完成额外的功能,恐怕只能靠牺牲更多的空间、时间来完成了。

布隆过滤器(推荐)

就是引入了k(k>1)k(k>1)个相互独立的哈希函数,保证在给定的空间、误判率下,完成元素判重的过程。
它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
Bloom-Filter算法的核心思想就是利用多个不同的Hash函数来解决“冲突”。
Hash存在一个冲突(碰撞)的问题,用同一个Hash得到的两个URL的值有可能相同。为了减少冲突,我们可以多引入几个Hash,如果通过其中的一个Hash值我们得出某元素不在集合中,那么该元素肯定不在集合中。只有在所有的Hash函数告诉我们该元素在集合中时,才能确定该元素存在于集合中。这便是Bloom-Filter的基本思想。
Bloom-Filter一般用于在大数据量的集合中判定某元素是否存在。

3.缓存预热

缓存预热这个应该是一个比较常见的概念,相信很多小伙伴都应该可以很容易的理解,缓存预热就是系统上线后,将相关的缓存数据直接加载到缓存系统。这样就可以避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!
解决思路:
1、直接写个缓存刷新页面,上线时手工操作下;
2、数据量不大,可以在项目启动的时候自动进行加载;
3、定时刷新缓存;

4.缓存更新

除了缓存服务器自带的缓存失效策略之外(Redis默认的有6中策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种:

  • 定时去清理过期的缓存;
  • 当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。

两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,大家可以根据自己的应用场景来权衡。

5.缓存降级

当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。

降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。以参考日志级别设置预案:

  • (1)一般:比如有些服务偶尔因为网络抖动或者服务正在上线而超时,可以自动降级;
  • (2)警告:有些服务在一段时间内成功率有波动(如在95~100%之间),可以自动降级或人工降级,并发送告警;
  • (3)错误:比如可用率低于90%,或者数据库连接池被打爆了,或者访问量突然猛增到系统能承受的最大阀值,此时可以根据情况自动降级或者人工降级;
  • (4)严重错误:比如因为特殊原因数据错误了,此时需要紧急人工降级。

服务降级的目的,是为了防止Redis服务故障,导致数据库跟着一起发生雪崩问题。因此,对于不重要的缓存数据,可以采取服务降级策略,例如一个比较常见的做法就是,Redis出现问题,不去数据库查询,而是直接返回默认值给用户。

热点数据和冷数据是什么

热点数据,缓存才有价值。对于冷数据而言,大部分数据可能还没有再次访问到就已经被挤出内存,不仅占用内存,而且价值不大。频繁修改的数据,看情况考虑使用缓存

对于热点数据,比如我们的某IM产品,生日祝福模块,当天的寿星列表,缓存以后可能读取数十万次。再举个例子,某导航产品,我们将导航信息,缓存以后可能读取数百万次。

**数据更新前至少读取两次,**缓存才有意义。这个是最基本的策略,如果缓存还没有起作用就失效了,那就没有太大价值了。

那存不存在,修改频率很高,但是又不得不考虑缓存的场景呢?有!比如,这个读取接口对数据库的压力很大,但是又是热点数据,这个时候就需要考虑通过缓存手段,减少数据库的压力,比如我们的某助手产品的,点赞数,收藏数,分享数等是非常典型的热点数据,但是又不断变化,此时就需要将数据同步保存到Redis缓存,减少数据库压力。

redis的数据类型,以及每种数据类型的使用场景

(一)String

这个其实没啥好说的,最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。常规key-value缓存应用;常规计数:微博数,粉丝数等

(二)hash

这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。博主在做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。比如我们可以 hash 数据结构来存储用户信息,商品信息等等

(三)list

list 就是链表,Redis list 的应用场景非常多,也是Redis最重要的数据结构之一,比如微博的关注列表,粉丝列表,消息列表等功能都可以用Redis的 list 结构来实现。

Redis list 的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销。

另外可以通过 lrange 命令,就是从某个元素开始读取多少个元素,可以基于 list 实现分页查询,这个很棒的一个功能,基于 redis 实现简单的高性能分页,可以做类似微博那种下拉不断分页的东西(一页一页的往下走),性能高。

(四)set

set 对外提供的功能与list类似是一个列表的功能,特殊之处在于 set 是可以自动排重的。

当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的。可以基于 set 轻易实现交集、并集、差集的操作。

比如:在微博应用中,可以将一个用户所有的关注人存在一个集合中,将其所有粉丝存在一个集合。Redis可以非常方便的实现如共同关注、共同粉丝、共同喜好等功能。这个过程也就是求交集的过程,具体命令如下

(五)sorted set

sorted set多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。

Redis 内部结构

  • dict 本质上是为了解决算法中的查找问题(Searching)是一个用于维护key和value映射关系的数据结构,与很多语言中的Map或dictionary类似。 本质上是为了解决算法中的查找问题(Searching)
  • sds sds就等同于char * 它可以存储任意二进制数据,不能像C语言字符串那样以字符’\0’来标识字符串的结 束,因此它必然有个长度字段。
  • skiplist (跳跃表) 跳表是一种实现起来很简单,单层多指针的链表,它查找效率很高,堪比优化过的二叉平衡树,且比平衡树的实现,
  • quicklist
  • ziplist 压缩表 ziplist是一个编码后的列表,是由一系列特殊编码的连续内存块组成的顺序型数据结构

redis的过期策略以及内存淘汰机制

过期策略

redis采用的是定期删除+惰性删除策略。

Redis中有个设置时间过期的功能,即对存储在 redis 数据库中的值可以设置一个过期时间。作为一个缓存数据库,这是非常实用的。如我们一般项目中的 token 或者一些登录信息,尤其是短信验证码都是有时间限制的,按照传统的数据库处理方式,一般都是自己判断过期,这样无疑会严重影响项目性能。

我们 set key 的时候,都可以给一个 expire time,就是过期时间,通过过期时间我们可以指定这个 key 可以存活的时间。

如果假设你设置了一批 key 只能存活1个小时,那么接下来1小时后,redis是怎么对这批key进行删除的?

定期删除+惰性删除。通过名字大概就能猜出这两个删除方式的意思了。

  • 定期删除:redis默认是每隔 100ms 就随机抽取一些设置了过期时间的key,检查其是否过期,如果过期就删除。注意这里是随机抽取的。为什么要随机呢?你想一想假如 redis 存了几十万个 key ,每隔100ms就遍历所有的设置过期时间的 key 的话,就会给 CPU 带来很大的负载!
  • 惰性删除 :定期删除可能会导致很多过期 key 到了时间并没有被删除掉。所以就有了惰性删除。假如你的过期 key,靠定期删除没有被删除掉,还停留在内存里,除非你的系统去查一下那个 key,才会被redis给删除掉。这就是所谓的惰性删除,也是够懒的哈!

但是仅仅通过设置过期时间还是有问题的。我们想一下:如果定期删除漏掉了很多过期 key,然后你也没及时去查,也就没走惰性删除,此时会怎么样?如果大量过期key堆积在内存里,导致redis内存块耗尽了。怎么解决这个问题呢? redis 内存淘汰机制。

在redis.conf中有一行配置

maxmemory-policy volatile-lru

该配置就是配内存淘汰策略的(什么,你没配过?好好反省一下自己)redis 配置文件 redis.conf 中有相关注释,我这里就不贴了,大家可以自行查阅或者通过这个网址查看: http://download.redis.io/redis-stable/redis.conf

淘汰策略

redis 提供 6种数据淘汰策略:

  • volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
  • volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
  • volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
  • allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
  • allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
  • no-enviction(驱逐):禁止驱逐数据,新写入操作会报错。也就是说当内存不足以容纳新写入数据时,新写入操作会报错。这个应该没人使用吧!

ps:如果没有设置 expire 的key, 不满足先决条件(prerequisites); 那么 volatile-lru, volatile-random 和 volatile-ttl 策略的行为, 和 noeviction(不删除) 基本上一致。

4.0版本后增加以下两种:

  • volatile-lfu:从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰
  • allkeys-lfu:当内存不足以容纳新写入数据时,在键空间中,移除最不经常使用的key

面试题:redis 内存淘汰机制(MySQL里有2000w数据,Redis中只存20w的数据,如何保证Redis中的数据都是热点数据?)

Redis 是单线程的

官方FAQ表示,因为Redis是基于内存的操作,CPU不是Redis的瓶颈,Redis的瓶颈最有可能是机器内存的大小或者网络带宽。既然单线程容易实现,而且CPU不会成为瓶颈,那就顺理成章地采用单线程的方案了(多线程处理会涉及到锁,而且多线程处理会涉及到线程切换而消耗CPU)Redis利用队列技术将并发访问变为串行访问

单线程的redis为什么这么快

  • 纯内存操作
  • 单线程操作,避免了频繁的上下文切换
  • 采用了非阻塞I/O多路复用机制

其它开源软件采用的模型

  • Nginx:多进程单线程模型
  • Memcached:单进程多线程模型

Redis线程模型

redis是一个单线程程序,也就说同一时刻它只能处理一个客户端请求;

文件事件处理器包括分别是套接字、 I/O 多路复用程序、 文件事件分派器(dispatcher)、 以及事件处理器。使用 I/O  多路复用程序负责监听多个套接字, 并向文件事件分派器传送那些产生了事件的套接字。

尽管多个文件事件可能会并发地出现, 但 I/O 多路复用程序总是会将所有产生事件的套接字都入队到一个队列里面, 然后通过这个队列, 以有序(sequentially)、同步(synchronously)、每次一个套接字的方式向文件事件分派器传送套接字: 当上一个套接字产生的事件被处理完毕之后(该套接字为事件所关联的事件处理器执行完毕), I/O 多路复用程序才会继续向文件事件分派器传送下一个套接字。如果一个套接字又可读又可写的话, 那么服务器将先读套接字, 后写套接字.

Redis 面试题汇总
为什么Redis的操作是原子性的,怎么保证原子性的?

对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。

Redis的操作之所以是原子性的,是因为Redis是单线程的。

Redis本身提供的所有API都是原子操作,Redis中的事务其实是要保证批量操作的原子性。

多个命令在并发中也是原子性的吗?

不一定, 将get和set改成单命令操作,incr 。使用Redis的事务,或者使用Redis+Lua==的方式实现.

Redis 有哪些架构模式?讲讲各自的特点

单机版

Redis 面试题汇总

特点:简单

问题:1、内存容量有限 2、处理能力有限 3、无法高可用。

主从复制

Redis 面试题汇总

Redis 的复制(replication)功能允许用户根据一个 Redis 服务器来创建任意多个该服务器的复制品,其中被复制的服务器为主服务器(master),而通过复制创建出来的服务器复制品则为从服务器(slave)。 只要主从服务器之间的网络连接正常,主从服务器两者会具有相同的数据,主服务器就会一直将发生在自己身上的数据更新同步 给从服务器,从而一直保证主从服务器的数据相同。

特点:

  • master/slave 角色
  • master/slave 数据相同
  • 降低 master 读压力在转交从库

问题:

  • 无法保证高可用
  • 没有解决 master 写的压力

哨兵(2.8版本或更高才有)

Redis 面试题汇总

Redis sentinel 是一个分布式系统中监控 redis 主从服务器,并在主服务器下线时自动进行故障转移。其中三个特性:

  • 监控(Monitoring):Sentinel  会不断地检查你的主服务器和从服务器是否运作正常。
  • 提醒(Notification):当被监控的某个 Redis 服务器出现问题时, Sentinel 可以通过 API 向管理员或者其他应用程序发送通知。
  • 自动故障迁移(Automatic failover): 当一个主服务器不能正常工作时, Sentinel 会开始一次自动故障迁移操作。

特点:

  • 保证高可用
  • 监控各个节点
  • 自动故障迁移

缺点:主从模式,切换需要时间丢数据;没有解决 master 写的压力

原理:

1.三个定时监控任务:

  • 1.1 每隔10s,每个S节点(哨兵节点)会向主节点和从节点发送info命令获取最新的拓扑结构
  • 1.2 每隔2s,每个S节点会向某频道上发送该S节点对于主节点的判断以及当前Sl节点的信息,
  • 同时每个Sentinel节点也会订阅该频道,来了解其他S节点以及它们对主节点的判断(做客观下线依据)
  • 1.3 每隔1s,每个S节点会向主节点、从节点、其余S节点发送一条ping命令做一次心跳检测(心跳检测机制),来确认这些节点当前是否可达

2.主客观下线:

  • 2.1主观下线:根据第三个定时任务对没有有效回复的节点做主观下线处理
  • 2.2客观下线:若主观下线的是主节点,会咨询其他S节点对该主节点的判断,超过半数,对该主节点做客观下线

3.选举出某一哨兵节点作为领导者,来进行故障转移。选举方式:raft算法。每个S节点有一票同意权,哪个S节点做出主观下线的时候,就会询问其他S节点是否同意其为领导者。获得半数选票的则成为领导者。基本谁先做出客观下线,谁成为领导者。

4.故障转移(选举新主节点流程):

Redis 面试题汇总

集群(proxy 型):

Redis 面试题汇总

Twemproxy 是一个 Twitter 开源的一个 redis 和 memcache 快速/轻量级代理服务器; Twemproxy 是一个快速的单线程代理程序,支持 Memcached ASCII 协议和 redis 协议。

特点:

  • 多种 hash 算法:MD5、CRC16、CRC32、CRC32a、hsieh、murmur、Jenkins 
  • 支持失败节点自动删除
  • 后端 Sharding 分片逻辑对业务透明,业务方的读写方式和操作单个 Redis 一致

缺点:增加了新的 proxy,需要维护其高可用。

failover 逻辑需要自己实现,其本身不能支持故障的自动转移可扩展性差,进行扩缩容都需要手动干预

集群(直连型):

Redis 面试题汇总

从redis 3.0之后版本支持redis-cluster集群,Redis-Cluster采用无中心结构,每个节点保存数据和整个集群状态,每个节点都和其他所有节点连接。

特点:

  • 无中心架构(不存在哪个节点影响性能瓶颈),少了 proxy 层。
  • 数据按照 slot 存储分布在多个节点,节点间数据共享,可动态调整数据分布。
  • 可扩展性,可线性扩展到 1000 个节点,节点可动态添加或删除。
  • 高可用性,部分节点不可用时,集群仍可用。通过增加 Slave 做备份数据副本
  • 实现故障自动 failover,节点之间通过 gossip 协议交换状态信息,用投票机制完成 Slave到 Master 的角色提升。

缺点:

  • 资源隔离性较差,容易出现相互影响的情况。
  • 数据通过异步复制,不保证数据的强一致性

集群特点比较

  • 1.twemproxy,大概概念是,它类似于一个代理方式, 使用时在本需要连接 redis 的地方改为连接 twemproxy, 它会以一个代理的身份接收请求并使用一致性 hash 算法,将请求转接到具体 redis,将结果再返回 twemproxy。缺点: twemproxy 自身单端口实例的压力,使用一致性 hash 后,对 redis 节点数量改变时候的计算值的改变,数据无法自动移动到新的节点。
  • 2.codis,目前用的最多的集群方案,基本和 twemproxy 一致的效果,但它支持在 节点数量改变情况下,旧节点数据可恢复到新 hash 节点
  • 3.redis cluster3.0 自带的集群,特点在于他的分布式算法不是一致性 hash,而是 hash 槽的概念,以及自身支持节点设置从节点。具体看官方文档介绍。

Redis事务

Redis事务功能是通过MULTI、EXEC、DISCARD和WATCH 四个原语实现的,Redis会将一个事务中的所有命令序列化,然后按顺序执行。

  • 1.redis 不支持回滚“Redis 在事务失败时不进行回滚,而是继续执行余下的命令”, 所以 Redis 的内部可以保持简单且快速。
  • 2.如果在一个事务中的命令出现错误,那么所有的命令都不会执行;
  • 3.如果在一个事务中出现运行错误,那么正确的命令会被执行。

1)MULTI命令用于开启一个事务,它总是返回OK。 MULTI执行之后,客户端可以继续向服务器发送任意多条命令,这些命令不会立即被执行,而是被放到一个队列中,当EXEC命令被调用时,所有队列中的命令才会被执行。
2)EXEC:执行所有事务块内的命令。返回事务块内所有命令的返回值,按命令执行的先后顺序排列。 当操作被打断时,返回空值 nil 。
3)通过调用DISCARD,客户端可以清空事务队列,并放弃执行事务, 并且客户端会从事务状态中退出。
4)WATCH 命令可以为 Redis 事务提供 check-and-set (CAS)行为。 可以监控一个或多个键,一旦其中有一个键被修改(或删除),之后的事务就不会执行,监控一直持续到EXEC命令。

如何解决 Redis 的并发竞争 Key 问题

所谓 Redis 的并发竞争 Key 的问题也就是多个系统同时对一个 key 进行操作,但是最后执行的顺序和我们期望的顺序不同,这样也就导致了结果的不同!

推荐一种方案:分布式锁(zookeeper 和 redis 都可以实现分布式锁)。(如果不存在 Redis 的并发竞争 Key 问题,不要使用分布式锁,这样会影响性能)

基于zookeeper临时有序节点可以实现的分布式锁。大致思想为:每个客户端对某个方法加锁时,在zookeeper上的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点。 判断是否获取锁的方式很简单,只需要判断有序节点中序号最小的一个。 当释放锁的时候,只需将这个瞬时节点删除即可。同时,其可以避免服务宕机导致的锁无法释放,而产生的死锁问题。完成业务流程后,删除对应的子节点释放锁。在实践中,当然是从以可靠性为主。所以首推Zookeeper。参考:https://www.jianshu.com/p/8bddd381de06

Redis实现分布式锁

Redis为单进程单线程模式,采用队列模式将并发访问变成串行访问,且多客户端对Redis的连接并不存在竞争关系Redis中可以使用SETNX命令实现分布式锁。

将 key 的值设为 value ,当且仅当 key 不存在。 若给定的 key 已经存在,则 SETNX 不做任何动作

Redis 面试题汇总

解锁:使用 del key 命令就能释放锁

解决死锁:
1)通过Redis中expire()给锁设定最大持有时间,如果超过,则Redis来帮我们释放锁。
2) 使用 setnx key “当前系统时间+锁持有的时间”和getset key “当前系统时间+锁持有的时间”组合的命令就可以实现。

同时有多个子系统去set一个key。这个时候要注意什么呢? 不推荐使用redis的事务机制。因为我们的生产环境,基本都是redis集群环境,做了数据分片操作。你一个事务中有涉及到多个key操作的时候,这多个key不一定都存储在同一个redis-server上。因此,redis的事务机制,十分鸡肋。
(1)如果对这个key操作,不要求顺序: 准备一个分布式锁,大家去抢锁,抢到锁就做set操作即可
(2)如果对这个key操作,要求顺序: 分布式锁+时间戳。 假设这会系统B先抢到锁,将key1设置为{valueB 3:05}。接下来系统A抢到锁,发现自己的valueA的时间戳早于缓存中的时间戳,那就不做set操作了。以此类推。
(3) 利用队列,将set方法变成串行访问也可以redis遇到高并发,如果保证读写key的一致性
对redis的操作都是具有原子性的,是线程安全的操作,你不用考虑并发问题,redis内部已经帮你处理好并发的问题了。

如何保证缓存与数据库双写时的数据一致性?

你只要用缓存,就可能会涉及到缓存与数据库双存储双写,你只要是双写,就一定会有数据一致性的问题,那么你如何解决一致性问题?

一般来说,就是如果你的系统不是严格要求缓存+数据库必须一致性的话,缓存可以稍微的跟数据库偶尔有不一致的情况,最好不要做这个方案,读请求和写请求串行化,串到一个内存队列里去,这样就可以保证一定不会出现不一致的情况

串行化之后,就会导致系统的吞吐量会大幅度的降低,用比正常情况下多几倍的机器去支撑线上的一个请求。

其他问题

Redis哈希槽的概念?

Redis集群没有使用一致性hash,而是引入了哈希槽的概念,当需要在 Redis 集群中放置一个 key-value 时,根据 CRC16(key) mod 16384的值,决定将一个key放到哪个桶中。

Redis集群最大节点个数是多少?

Redis集群预分好16384个桶(哈希槽)

Redis集群会有写操作丢失吗?为什么?

Redis并不能保证数据的强一致性,这意味这在实际中集群在特定的条件下可能会丢失写操作。

Redis如何做内存优化?

尽可能使用散列表(hashes),散列表(是说散列表里面存储的数少)使用的内存非常小,所以你应该尽可能的将你的数据模型抽象到一个散列表里面。比如你的web系统中有一个用户对象,不要为这个用户的名称,姓氏,邮箱,密码设置单独的key,而是应该把这个用户的所有信息存储到一张散列表里面.

Redis回收使用的是什么算法?

LRU算法

如果在setnx之后执行expire之前进程意外crash或者要重启维护了,那会怎么样?

set指令有非常复杂的参数,这个应该是可以同时把setnx和expire合成一条指令来用的!

使用过Redis做异步队列么,你是怎么用的?有什么缺点?

一般使用list结构作为队列,rpush生产消息,lpop消费消息。当lpop没有消息的时候,要适当sleep一会再重试。

缺点:在消费者下线的情况下,生产的消息会丢失,得使用专业的消息队列如rabbitmq等。

能不能生产一次消费多次呢?

使用pub/sub主题订阅者模式,可以实现1:N的消息队列。

redis常见性能问题和解决方案:

  • Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件
  •  如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次
  • 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内
  • 尽量避免在压力很大的主库上增加从库
  • 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...
  • 这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。

使用Redis有哪些好处?

  • 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)
  • 支持丰富数据类型,支持string,list,set,sorted set,hash
  • 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行
  • 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除

Redis 常见的性能问题都有哪些?如何解决?

  • Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照。
  • Master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久化,如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。
  • Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。
  • Redis主从复制的性能问题,为了主从复制的速度和连接的稳定性,Slave和Master最好在同一个局域网内.

redis 最适合的场景

  • 1)Session共享(单点登录)
  • 2)页面缓存
  • 3)队列
  • 4)排行榜/计数器
  • 5)发布/订阅

Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-backed的功能,
跟传统意义上的持久化有比较大的差别那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,
那么何时使用Memcached,何时使用Redis呢?

(1)会话缓存(Session Cache),最常用的一种使用Redis的情景是会话缓存(session cache)。
用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。
当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,当有持久化,他们还会这样吗?
幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用Redis来缓存会话的文档。
甚至广为人知的商业平台Magento也提供Redis的插件。

(2)全页缓存(FPC)
除基本的会话token之外,Redis还提供很简便的FPC平台。
回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC。
再次以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。
此外,对WordPress的用户来说,Pantheon有一个非常好的插件  wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。

(3)队列
Reids在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得Redis能作为一个很好的消息队列平台来使用。
Redis作为队列使用的操作,就类似于本地程序语言(如Python)对 list 的 push/pop 操作。
如果你快速的在Google中搜索“Redis queues”,你马上就能找到大量的开源项目,这些项目的目的就是利用Redis创建非常好的后端工具,以满足各种队列需求。
例如,Celery有一个后台就是使用Redis作为broker,你可以从这里去查看。

(4)排行榜/计数器
Redis在内存中对数字进行递增或递减的操作实现的非常好。
集合(Set)和有序集合(Sorted Set)也使得我们在执行这些操作的时候变的非常简单,Redis只是正好提供了这两种数据结构。
所以,我们要从排序集合中获取到排名最靠前的10个用户–我们称之为“user_scores”,我们只需要像下面一样执行即可:
当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执行:
ZRANGE user_scores 0 10 WITHSCORES
Agora Games就是一个很好的例子,用Ruby实现的,它的排行榜就是使用Redis来存储数据的,你可以在这里看到。

(5)发布/订阅
最后(但肯定不是最不重要的)是Redis的发布/订阅功能。发布/订阅的使用场景确实非常多。
我已看见人们在社交网络连接中使用,还可作为基于发布/订阅的脚本触发器,甚至用Redis的发布/订阅功能来建立聊天系统!(不,这是真的,你可以去核实)。
Redis提供的所有特性中,我感觉这个是喜欢的人最少的一个,虽然它为用户提供如果此多功能。

Redis 面试题汇总

https://blog.csdn.net/Butterfly_resting/article/details/89668661

https://www.cnblogs.com/jasontec/p/9699242.html

https://blog.csdn.net/qq_41699100/article/details/86102235
https://blog.csdn.net/qq_34337272/article/details/80012284

相关标签: Redis 面试