欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Radar Installation

程序员文章站 2022-04-18 08:26:30
...

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d. 

We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. 

Radar Installation 
Figure A Sample Input of Radar Installations


 

Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases. 

The input is terminated by a line containing pair of zeros 

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1

1 2
0 2

0 0

Sample Output

Case 1: 2
Case 2: 1

    题目大意:以x轴为分界,y>0部分为海,y<0部分为陆地,给出一些岛屿坐标(在海中),再给出雷达可达到范围,雷达只可      以安在陆地上,问最少多少雷达可以覆盖所以岛屿
 

   考虑最左边的一个岛屿A,要用一个雷达去覆盖它,又要使得之后的岛屿会尽可能的都在这个雷达的范围里,那么雷达在覆盖A     的条件下越往左放置越好,即A刚好在雷达扫描的边界上为最优,我们可以以此来求出雷达的坐标,然后判断继A之后有哪些岛     屿在刚刚放置的雷达范围之中,若在便从队列中除去,若不在便以此岛屿再次执行与A一样的操作(即找下一个雷达的布置位       置)。

   后来发现这种做法是错误的,在放置第一个雷达时,在满足覆盖A的同时,并不是越往右放置越好,因为当雷达往右挪动时,       会将不再覆盖左侧的一部分(如图阴影部分),此时B点将需要另外添加一个雷达来覆盖,故这种思路是错误的!

Radar Installation

     那么该怎么做呢?我们可以这样想,既然我要用一个圆尝试着(雷达范围,半径为r)去覆盖岛屿,那为何不以岛屿为圆心r为       半径画一个圆(记为圆O),于是只要雷达在这个圆里那么这个岛屿就能被覆盖。而从前面的分析可知,雷达必然要布置在x       

     轴上,所以雷达肯定放在圆O与x轴的那段交线区间上,如图:

Radar Installation

 

#include <iostream>
#include <algorithm>
#include <stdlib.h>
#include <math.h>
#include <cstdio>

using namespace std;

struct point
{
	double left, right;
}p[2010], temp;

bool operator < (point a, point b)
{
	return a.left < b.left;
}

int main()
{
	int n;
	double r;
	int kase = 0;
	while (scanf("%d%lf",&n,&r)!=EOF &&(n || r))
	{
		bool flag = false;
		for (int i = 0; i < n; i++)
		{
			double a, b;
			scanf("%lf%lf",&a,&b);
			if (fabs(b) > r)
			{
				flag = true;
			}
			else
			{
				p[i].left = a * 1.0 - sqrt(r * r - b * b);
				p[i].right = a * 1.0 + sqrt(r * r - b * b);
			}
		}
		printf("Case %d: ",++kase);
		if (flag)
		{
			printf("-1\n");
		}
		else
		{
			int countt = 1;
			sort(p, p + n);
			temp = p[0];

			for (int i = 1; i < n; i++)
			{
				if (p[i].left > temp.right)
				{
					countt++;
					temp = p[i];
				}
				else if (p[i].right <=temp.right)
				{
					temp = p[i];
				}
			}
			printf("%d\n",countt);
		}
	}
}