欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

elastic-job之监听器

程序员文章站 2022-04-17 23:20:04
...

每个作业都可以配置一个任务监听器,确切的说是只能配置一个本地监听器和一个分布式监听器。Elastic-job有三种作业类型,但是它们的通用配置都是一样的,所以本文在介绍作业的监听器配置时将仅以简单作业的配置为例。

本地监听器

本地监听器只在节点执行自己分片的时候调度,每个分片任务调度的时候本地监听器都会执行。本地监听器由ElasticJobListener接口定义,其定义如下:

/**
 * 弹性化分布式作业监听器接口.
 * 
 * @author zhangliang
 */
public interface ElasticJobListener {
    
    /**
     * 作业执行前的执行的方法.
     * 
     * @param shardingContexts 分片上下文
     */
    void beforeJobExecuted(final ShardingContexts shardingContexts);
    
    /**
     * 作业执行后的执行的方法.
     *
     * @param shardingContexts 分片上下文
     */
    void afterJobExecuted(final ShardingContexts shardingContexts);
}

该接口的接口方法的注释上已经说明了对应的接口方法的调用时机,详情也可以参考com.dangdang.ddframe.job.executor.AbstractElasticJobExecutor.execute()方法。简单示例如下:

public class MyElasticJobListener implements ElasticJobListener {

	private static final Logger LOGGER = Logger.getLogger(MyElasticJobListener.class);
	
	@Override
	public void beforeJobExecuted(ShardingContexts shardingContexts) {
		LOGGER.info(String.format("开始调度任务[%s]", shardingContexts.getJobName()));
	}

	@Override
	public void afterJobExecuted(ShardingContexts shardingContexts) {
		LOGGER.info(String.format("任务[%s]调度完成", shardingContexts.getJobName()));
	}

}

本地监听器的配置由<job:listener/>节点配置,如下示例中就通过<job:listener/>给简单作业myElasticJob定义了一个本地监听器。

<bean id="simpleJob" class="com.elim.learn.elastic.job.MyElasticJob"/>
<job:simple id="myElasticJob" job-ref="simpleJob"
	registry-center-ref="regCenter" cron="0/30 * * * * ?"
	sharding-total-count="6" sharding-item-parameters="0=A,1=B,2=C,3=D,4=E,5=F"
	failover="true" overwrite="true" >
	<job:listener class="com.elim.learn.elastic.job.listener.MyElasticJobListener" />
</job:simple>

分布式监听器

本地监听器在作业执行本地的分片任务时会执行,如上面的示例,我们的作业被分成了6片,则监听器任务会执行6次。而分布式监听器会在总的任务开始执行时执行一次,在总的任务结束执行时执行一次。分布式监听器也是在普通监听器的基础上实现的,由AbstractDistributeOnceElasticJobListener抽象类封装的,其实现了ElasticJobListener接口。要实现自己的监听器只需要继承AbstractDistributeOnceElasticJobListener抽象类,实现其中的抽象方法即可。AbstractDistributeOnceElasticJobListener抽象类的定义如下:

/**
 * 在分布式作业中只执行一次的监听器.
 * 
 * @author zhangliang
 */
public abstract class AbstractDistributeOnceElasticJobListener implements ElasticJobListener {
    
    private final long startedTimeoutMilliseconds;
    
    private final Object startedWait = new Object();
    
    private final long completedTimeoutMilliseconds;
    
    private final Object completedWait = new Object();
    
    @Setter
    private GuaranteeService guaranteeService;
    
    private TimeService timeService = new TimeService();
    
    public AbstractDistributeOnceElasticJobListener(final long startedTimeoutMilliseconds, final long completedTimeoutMilliseconds) {
        if (startedTimeoutMilliseconds <= 0L) {
            this.startedTimeoutMilliseconds = Long.MAX_VALUE;
        } else {
            this.startedTimeoutMilliseconds = startedTimeoutMilliseconds;
        }
        if (completedTimeoutMilliseconds <= 0L) {
            this.completedTimeoutMilliseconds = Long.MAX_VALUE; 
        } else {
            this.completedTimeoutMilliseconds = completedTimeoutMilliseconds;
        }
    }
    
    @Override
    public final void beforeJobExecuted(final ShardingContexts shardingContexts) {
        guaranteeService.registerStart(shardingContexts.getShardingItemParameters().keySet());
        if (guaranteeService.isAllStarted()) {
            doBeforeJobExecutedAtLastStarted(shardingContexts);
            guaranteeService.clearAllStartedInfo();
            return;
        }
        long before = timeService.getCurrentMillis();
        try {
            synchronized (startedWait) {
                startedWait.wait(startedTimeoutMilliseconds);
            }
        } catch (final InterruptedException ex) {
            Thread.interrupted();
        }
        if (timeService.getCurrentMillis() - before >= startedTimeoutMilliseconds) {
            guaranteeService.clearAllStartedInfo();
            handleTimeout(startedTimeoutMilliseconds);
        }
    }
    
    @Override
    public final void afterJobExecuted(final ShardingContexts shardingContexts) {
        guaranteeService.registerComplete(shardingContexts.getShardingItemParameters().keySet());
        if (guaranteeService.isAllCompleted()) {
            doAfterJobExecutedAtLastCompleted(shardingContexts);
            guaranteeService.clearAllCompletedInfo();
            return;
        }
        long before = timeService.getCurrentMillis();
        try {
            synchronized (completedWait) {
                completedWait.wait(completedTimeoutMilliseconds);
            }
        } catch (final InterruptedException ex) {
            Thread.interrupted();
        }
        if (timeService.getCurrentMillis() - before >= completedTimeoutMilliseconds) {
            guaranteeService.clearAllCompletedInfo();
            handleTimeout(completedTimeoutMilliseconds);
        }
    }
    
    private void handleTimeout(final long timeoutMilliseconds) {
        throw new JobSystemException("Job timeout. timeout mills is %s.", timeoutMilliseconds);
    }
    
    /**
     * 分布式环境中最后一个作业执行前的执行的方法.
     *
     * @param shardingContexts 分片上下文
     */
    public abstract void doBeforeJobExecutedAtLastStarted(ShardingContexts shardingContexts);
    
    /**
     * 分布式环境中最后一个作业执行后的执行的方法.
     *
     * @param shardingContexts 分片上下文
     */
    public abstract void doAfterJobExecutedAtLastCompleted(ShardingContexts shardingContexts);
    
    /**
     * 通知任务开始.
     */
    public void notifyWaitingTaskStart() {
        synchronized (startedWait) {
            startedWait.notifyAll();
        }
    }
    
    /**
     * 通知任务结束.
     */
    public void notifyWaitingTaskComplete() {
        synchronized (completedWait) {
            completedWait.notifyAll();
        }
    }
}

以下是一个使用分布式监听器的示例:

public class MyDistributeOnceElasticJobListener extends AbstractDistributeOnceElasticJobListener {

	private static final Logger logger = Logger.getLogger(MyDistributeOnceElasticJobListener.class);
	
	/**
	 * @param startedTimeoutMilliseconds
	 * @param completedTimeoutMilliseconds
	 */
	public MyDistributeOnceElasticJobListener(long startedTimeoutMilliseconds, long completedTimeoutMilliseconds) {
		super(startedTimeoutMilliseconds, completedTimeoutMilliseconds);
	}

	@Override
	public void doBeforeJobExecutedAtLastStarted(ShardingContexts shardingContexts) {
		logger.info("分布式监听器开始……");
	}

	@Override
	public void doAfterJobExecutedAtLastCompleted(ShardingContexts shardingContexts) {
		logger.info("分布式监听器结束……");
	}

}

分布式监听器用到了锁的等待和通知,startedTimeoutMilliseconds和completedTimeoutMilliseconds分别用来指定作业开始前和完成后的对应的锁等待最大超时时间。分布式监听器由<job:distributed-listener/>,以下是一个使用分布式监听器的示例:

<bean id="simpleJob" class="com.elim.learn.elastic.job.MyElasticJob"/>
<job:simple id="myElasticJob" job-ref="simpleJob"
	registry-center-ref="regCenter" cron="0/30 * * * * ?"
	sharding-total-count="6" sharding-item-parameters="0=A,1=B,2=C,3=D,4=E,5=F"
	failover="true" overwrite="true" >
	<job:distributed-listener class="com.elim.learn.elastic.job.listener.MyDistributeOnceElasticJobListener" 
			started-timeout-milliseconds="100" completed-timeout-milliseconds="100"/>
</job:simple>

(本文由Elim写于2017年10月2日)