欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

视觉SLAM理论与实践5

程序员文章站 2022-04-17 17:04:35
...

一、ORB特征点

1.1 ORB提取
ORB 即Oriented FAST 简称。它实际上是FAST 特征再加上一个旋转量。本习题将使用OpenCV 自带的FAST 提取算法,但是你要完成旋转部分的计算。旋转的计算过程描述如下 【2】:

视觉SLAM理论与实践5
1.2 ORB描述
ORB 描述即带旋转的BRIEF 描述。所谓BRIEF 描述是指一个0-1 组成的字符串(可以取256 位或128 位),每一个bit 表示一次像素间的比较。算法流程如下:
视觉SLAM理论与实践5
其中up; vp 为p 的坐标,对q 亦然。记旋转后的p; q 为p′; q′,那么比较I(p′) 和I(q′),若前者大,记di = 0,反之记di = 1【1】。
视觉SLAM理论与实践5

1.3 暴力匹配
在提取描述之后,我们需要根据描述子进行匹配。暴力匹配是一种简单粗暴的匹配方法,在特征点不多时很有用。下面你将根据习题指导,书写暴力匹配算法。所谓暴力匹配思路很简单。给定两组描述子P = [p1, … , pM] 和Q = [q1, … , qN]。那么,对P 中任意一个点,找到Q 中对应最小距离点,即算一次匹配。但是这样做会对每个特征点都找到一个匹配,所以我们通常还会限制一个距离阈值dmax,即认作匹配的特征点距离不应该大于dmax。下面请你根据上述描述,实现函数bfMatch,返回给定特征点的匹配情况。实践中取dmax = 50。
视觉SLAM理论与实践5
部分代码片段如下:

1)提取图像中的角点

// compute the angle
void computeAngle(const cv::Mat &image, vector<cv::KeyPoint> &keypoints) {
    int half_patch_size = 8;
    for (auto &kp : keypoints) {
	// START YOUR CODE HERE (~7 lines)
        kp.angle = 0; // compute kp.angle
        cv::Point2f p=kp.pt;
        if(p.x<8||p.x>image.cols-8||p.y<8||p.y>image.rows-8){continue;} // 把越界点去除不考虑
        double m10=0,m01=0,m00=0; //1.在小的图像块B中,定义图像块的矩
        for(int i=-8;i<8;i++){
            const uchar* col = image.ptr<uchar>(p.y+i);
            for(int j=-8;j<8;j++){
                m00+=col[(int)p.x+j];
                m10+=j*col[(int)p.x+j];
                m01+=i*col[(int)p.x+j];
            }
        }
        double cx=0,cy=0; //2.通过矩可以找到图像块的质心
        cx=m10/m00;
        cy=m01/m00; 
        kp.angle=atan2(cy,cx)*180/pi;//3.连接图像块的几何中心O与质心,得到方向向量
        // END YOUR CODE HERE
    }
    return;
}

2)计算描述子

// compute the descriptor
    void computeORBDesc(const cv::Mat &image, vector<cv::KeyPoint> &keypoints, vector<DescType> &desc) {
        for (auto &kp: keypoints) {
            DescType d(256, false);
            for (int i = 0; i < 256; i++) {
                // START YOUR CODE HERE (~7 lines)
                float cos_ = cos(kp.angle * pi / 180);
                float sin_ = sin(kp.angle * pi / 180);
                //旋转两个pattrn点到特征点角度旋转后的位置上
                cv::Point2f up_t(cos_ * ORB_pattern[4 * i] - sin_ * ORB_pattern[4 * i + 1],
                                 sin_ * ORB_pattern[4 * i] + cos_ * ORB_pattern[4 * i + 1]);
                cv::Point2f uq_t(cos_ * ORB_pattern[4 * i + 2] - sin_ * ORB_pattern[4 * i + 3],
                                 sin_ * ORB_pattern[4 * i + 2] + cos_* ORB_pattern[4 * i + 3]);
                //求作比较两点的坐标
                cv::Point2f up = up_t + kp.pt;
                cv::Point2f uq = uq_t + kp.pt;
                //出界点把特征向量清空,并且不计入总数
                if (up.x < 0 || up.y < 0 || up.x > image.cols || up.y > image.rows ||
                    uq.x < 0 || uq.y < 0 || uq.x > image.cols || uq.y > image.rows) {
                    d.clear();
                    break;// if kp goes outside, set d.clear()
                }
                d[i] = image.at<uchar>(up) > image.at<uchar>(uq) ? 0 : 1;//又是一种读取像素的方式

                //d[i] = 0;  // if kp goes outside, set d.clear()
                // END YOUR CODE HERE
            }
            desc.push_back(d);
        }

        int bad = 0;
        for (auto &d: desc) {
            if (d.empty()) bad++;
        }
        cout << "bad/total: " << bad << "/" << desc.size() << endl;
        return;
    }

3)暴力匹配

// brute-force matching
    void bfMatch(const vector<DescType> &desc1, const vector<DescType> &desc2, vector<cv::DMatch> &matches) {
        int d_max = 50;

        // START YOUR CODE HERE (~12 lines)
        // find matches between desc1 and desc2.
    for (size_t i = 0; i < desc1.size(); ++i){
        if(desc1[i].empty())
            continue;

        int d_min=256;
        int index2=-1;
        for(size_t j=0;j < desc2.size();j++){
            if(desc2[j].empty())continue;
            int dist=0;
            for(size_t k=0;k<256;k++){
                dist+=desc1[i][k]^desc2[j][k];
                if(dist>d_max)break;
            }
            if(dist<d_max&&dist<d_min){
                d_min=dist;
                index2=j;
            }
        }
        if(d_min<d_max){
            matches.push_back(cv::DMatch(i,index2,d_min));
        }
    }
}

CMakeLists.txt:

cmake_minimum_required(VERSION 2.8)
project(computeORB)

IF(NOT CMAKE_BUILD_TYPE)
    SET(CMAKE_BUILD_TYPE Release)
ENDIF()

MESSAGE("Build type: " ${CMAKE_BUILD_TYPE})

set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS}  -Wall  -O3 -march=native ")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall   -O3 -march=native")

# Check C++11 or C++0x support
include(CheckCXXCompilerFlag)
CHECK_CXX_COMPILER_FLAG("-std=c++11" COMPILER_SUPPORTS_CXX11)
CHECK_CXX_COMPILER_FLAG("-std=c++0x" COMPILER_SUPPORTS_CXX0X)
if(COMPILER_SUPPORTS_CXX11)
    set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
    add_definitions(-DCOMPILEDWITHC11)
    message(STATUS "Using flag -std=c++11.")
elseif(COMPILER_SUPPORTS_CXX0X)
    set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++0x")
    add_definitions(-DCOMPILEDWITHC0X)
    message(STATUS "Using flag -std=c++0x.")
else()
    message(FATAL_ERROR "The compiler ${CMAKE_CXX_COMPILER} has no C++11 support. Please use a different C++ compiler.")
endif()

LIST(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules)

find_package(OpenCV 3.0 QUIET)
if(NOT OpenCV_FOUND)
    find_package(OpenCV 2.4.3 QUIET)
    if(NOT OpenCV_FOUND)
        message(FATAL_ERROR "OpenCV > 2.4.3 not found.")
    endif()
endif()

include_directories(${OpenCV_INCLUDE_DIRS})
add_executable( ORB computeORB.cpp )
target_link_libraries( ORB ${OpenCV_LIBS} )

完整代码请点击这里获取

运行结果如下图:
视觉SLAM理论与实践5
视觉SLAM理论与实践5
1)为什么说ORB是一种二进制特征?
因为ORB由Oriented FAST关键点和改进的BRIEF描述子组成,其中BRIEF是一种二进制的描述子,其描述向量由许多0,1组成。所以也可以认为ORB是一种二进制特征。
2)为什么在匹配时使用50作为阈值,取更大或更小值会怎么样?
本人尝试阈值改变,将阈值改成10之后运行截图如下:
视觉SLAM理论与实践5
从结果看,似乎并未匹配成功。
改成500后,运行截图如下:
视觉SLAM理论与实践5
从结果来看出现误匹配过大的情况。

3)暴力匹配在你的机器上表现如何?你能想到什么减少计算量的匹配方法吗?

ORB+PROSAC 可减少误匹配,采用光流法或直接法可降低前端的计算量

二、从 E 恢复 R, t

视觉SLAM理论与实践5
代码E2Rt.cpp如下:

#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/Geometry>

using namespace Eigen;

#include <sophus/so3.h>

#include <iostream>

using namespace std;

int main(int argc, char **argv) {

   // 给定Essential矩阵
   Matrix3d E;
   E << -0.0203618550523477, -0.4007110038118445, -0.03324074249824097,
           0.3939270778216369, -0.03506401846698079, 0.5857110303721015,
           -0.006788487241438284, -0.5815434272915686, -0.01438258684486258;

   // 待计算的R,t
   Matrix3d R;
   Vector3d t;

   // SVD and fix sigular values
   // START YOUR CODE HERE
   Eigen::JacobiSVD<Matrix3d> svd(E, ComputeFullU | ComputeFullV); //svd分解
   Vector3d sigma1 = svd.singularValues(); //svd分解出来的sigma是3×1的向量
   Matrix3d SIGMA; //将向量sigma调整成矩阵SIGMA
   cout << "sigma = \n" << sigma1 << endl;
   SIGMA << (sigma1(0, 0) + sigma1(1, 0)) / 2, 0, 0,
           0, (sigma1(0, 0) + sigma1(1, 0)) / 2, 0,
           0, 0, 0;
//    SIGMA<<1,0,0,
//            0,1,0,
//            0,0,0;
   cout << "SIGMA = \n" << SIGMA << endl;

   // set t1, t2, R1, R2
   Matrix3d t_wedge1;
   Matrix3d t_wedge2;
   Matrix3d R1;
   Matrix3d R2;

   Matrix3d R_z1 = AngleAxisd(M_PI / 2, Vector3d(0, 0, 1)).toRotationMatrix(); //定义旋转矩阵,沿 Z 轴旋转 90 度
   Matrix3d R_z2 = AngleAxisd(-M_PI / 2, Vector3d(0, 0, 1)).toRotationMatrix(); //定义旋转矩阵沿 Z 轴旋转 -90 度

   Matrix3d U = svd.matrixU(); //u的值
   Matrix3d V = svd.matrixV(); //v的值

   // END YOUR CODE HERE

   // set t1, t2, R1, R2 
   // START YOUR CODE HERE

   t_wedge1 = U * R_z1 * SIGMA * U.transpose(); //t1的值
   t_wedge2 = U * R_z2 * SIGMA * U.transpose(); //t2的值
   R1 = U * R_z1.transpose() * V.transpose();
   R2 = U * R_z2.transpose() * V.transpose();
   // END YOUR CODE HERE
   cout << "R1 =\n" << R1 << endl;
   cout << "R2 =\n" << R2 << endl;
   cout << "t1 =\n" << Sophus::SO3::vee(t_wedge1) << endl;
   cout << "t2 =\n" << Sophus::SO3::vee(t_wedge2) << endl; // check t^R=E up to scale

   // check t^R=E up to scale
   Matrix3d tR = t_wedge1 * R1;
   cout << "t^R = " << tR << endl;

   return 0;
}

CMakeLists.txt:

cmake_minimum_required(VERSION 2.8)
project(E2Rt)

#set(Sophus_LIBRARIES "/usr/local/libSophus.so")
set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )
set( CMAKE_BUILD_TYPE "Debug" )

#set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR})
#include_directories($ {EIGEN3_INCLUDE_DIRS})

find_package(Sophus REQUIRED)

include_directories("/usr/include/eigen3")
include_directories(${Sophus_INCLUDE_DIRS})

#add_executable(eigenMatrix eigenMatrix.cpp)
add_executable(E2Rt E2Rt.cpp)
target_link_libraries(E2Rt ${Sophus_LIBRARIES})

运行截图如下:
视觉SLAM理论与实践5

三、用 G-N 实现 Bundle Adjustment 中的位姿估计

视觉SLAM理论与实践5
1)GN-BA.cpp:

#include <Eigen/Core>
#include <Eigen/Dense>

using namespace Eigen;

#include <vector>
#include <fstream>
#include <iostream>
#include <iomanip>

#include "sophus/se3.h"

using namespace std;

typedef vector<Vector3d, Eigen::aligned_allocator<Vector3d>> VecVector3d;
typedef vector<Vector2d, Eigen::aligned_allocator<Vector3d>> VecVector2d;
typedef Matrix<double, 6, 1> Vector6d;

string p3d_file = "../p3d.txt";
string p2d_file = "../p2d.txt";

int main(int argc, char **argv) {

   VecVector2d p2d;
   VecVector3d p3d;
   Matrix3d K;
   double fx = 520.9, fy = 521.0, cx = 325.1, cy = 249.7;
   K << fx, 0, cx, 0, fy, cy, 0, 0, 1;

   // load points in to p3d and p2d 
   // START YOUR CODE HERE
   fstream i3dFile(p3d_file);
   fstream i2dFile(p2d_file);
   string line;
   while(getline(i3dFile,line))
   {
       stringstream record(line);
       Vector3d vEle;
       for(auto i=0;i<3;i++)
           record>>vEle[i];
       p3d.push_back(vEle);
   }

   while(getline(i2dFile,line))
   {
       stringstream record(line);
       Vector2d vEle;
       for(auto i=0;i<2;i++)
           record>>vEle[i];
       p2d.push_back(vEle);
   }


   // END YOUR CODE HERE
   assert(p3d.size() == p2d.size());

   int iterations = 100;
   double cost = 0, lastCost = 0;
   int nPoints = p3d.size();
   cout << "points: " << nPoints << endl;

   Sophus::SE3 T_esti; // estimated pose

   for (int iter = 0; iter < iterations; iter++) {

       Matrix<double, 6, 6> H = Matrix<double, 6, 6>::Zero();
       Vector6d b = Vector6d::Zero();

       cost = 0;
       // compute cost
       for (int i = 0; i < nPoints; i++) {
           // compute cost for p3d[I] and p2d[I]
           // START YOUR CODE HERE 
           Vector2d p2 = p2d[i];
           Vector3d p3 = p3d[i];

           Vector3d P = T_esti * p3;
           double x = P[0];
           double y = P[1];
           double z = P[2];

           Vector2d p2_ = {fx * ( x/z ) + cx, fy * ( y/z ) + cy};
           Vector2d e = p2 - p2_;
           cost += (e[0]*e[0]+e[1]*e[1]);

       // END YOUR CODE HERE

       // compute jacobian
           Matrix<double, 2, 6> J;
           // START YOUR CODE HERE 
           J(0,0) = -(fx/z);
           J(0,1) = 0;
           J(0,2) = (fx*x/(z*z));
           J(0,3) = (fx*x*y/(z*z));
           J(0,4) = -(fx*x*x/(z*z)+fx);
           J(0,5) = (fx*y/z);
           J(1,0) = 0;
           J(1,1) = -(fy/z);
           J(1,2) = (fy*y/(z*z));
           J(1,3) = (fy*y*y/(z*z)+fy);
           J(1,4) = -(fy*x*y/(z*z));
           J(1,5) = -(fy*x/z);
       // END YOUR CODE HERE

           H += J.transpose() * J;
           b += -J.transpose() * e;
       }

   // solve dx 
       Vector6d dx;

       // START YOUR CODE HERE 
       dx = H.ldlt().solve(b);
       // END YOUR CODE HERE

       if (isnan(dx[0])) {
           cout << "result is nan!" << endl;
           break;
       }

       if (iter > 0 && cost >= lastCost) {
           // cost increase, update is not good
           cout << "cost: " << cost << ", last cost: " << lastCost << endl;
           break;
       }
       // update your estimation
       // START YOUR CODE HERE 
       T_esti = Sophus::SE3::exp(dx)*T_esti;
       // END YOUR CODE HERE   
       lastCost = cost;
       cout << "iteration " << iter << " cost=" << cout.precision(12) << cost << endl;
   }
   cout << "estimated pose: \n" << T_esti.matrix() << endl;
   return 0;
}

2)CMakeLists.txt:

cmake_minimum_required(VERSION 2.8)
project(GN-BA)

set(CMAKE_BUILD_TYPE "Release")

set(CMAKE_CXX_FLAGS "-std=c++11")
#set(CMAKE_BUILD_TYPE "Debug")

find_package(Sophus REQUIRED)
include_directories(${Sophus_INCLUDE_DIRS})


include_directories("/usr/include/eigen3")

add_executable(GN-BA GN-BA.cpp)
target_link_libraries(GN-BA ${Sophus_LIBRARIES})

运行截图如下:
视觉SLAM理论与实践5
1)如何定义重投影误差?
重投影误差:指的真实三维空间点在图像平面上的投影(也就是图像上的像素点)和重投影(其实是用我们的计算值得到的虚拟的像素点)的差值。
2)该误差关于自变量的雅克比矩阵是什么?
视觉SLAM理论与实践5
3)解出更新量之后,如何更新至之前的估计上?
通过李代数左乘更新,或四元素左乘更新。(右乘也行)代码中我是通过李代数左乘的方法。

四、用 ICP 实现轨迹对齐

视觉SLAM理论与实践5
视觉SLAM理论与实践5

1)轨迹未对齐代码如下“tra_icp.cpp”:

//
// Created by chengjun on 2019/12/4.
//
#include <sophus/se3.h>
#include <string>
#include <iostream>
#include <fstream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <Eigen/SVD>
#include <chrono>
#include <pangolin/pangolin.h>
using namespace std;
using namespace cv;
using namespace Sophus;
//pangolin画图
void DrawTrajectory(vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses1,vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses2) {
    if (poses1.empty()||poses2.empty()) {
        cerr << "Trajectory is empty!" << endl;
        return;
    }
    // create pangolin window and plot the trajectory
    pangolin::CreateWindowAndBind("Trajectory Viewer", 1024, 768);
    glEnable(GL_DEPTH_TEST);
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
    pangolin::OpenGlRenderState s_cam(
            pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),
            pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0)
    );
    pangolin::View &d_cam = pangolin::CreateDisplay()
            .SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f)
            .SetHandler(new pangolin::Handler3D(s_cam));
    while (pangolin::ShouldQuit() == false) {
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
        d_cam.Activate(s_cam);
        glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
        glLineWidth(2);
        for (size_t i = 0; i < poses1.size() - 1; i++) {
            //glColor3f(1 - (float) i / poses1.size(), 0.0f, (float) i / poses1.size());
            glColor3f(1.0f, 0.0f, 0.0f);
            glBegin(GL_LINES);
            auto p1 = poses1[i], p2 = poses1[i + 1];
            glVertex2d(p1.translation()[0], p1.translation()[1]);//p1.translation()[2]
            glVertex2d(p2.translation()[0], p2.translation()[1]);//p2.translation()[2]
            glEnd();
        }
        for (size_t i = 0; i < poses2.size() - 1; i++) {
            //glColor3f(1 - (float) i / poses2.size(), 0.0f, (float) i / poses2.size());
            glColor3f(0.0f, 0.0f, 0.0f);
            glBegin(GL_LINES);
            auto p1 = poses2[i], p2 = poses2[i + 1];
            glVertex2d(p1.translation()[0], p1.translation()[1]);//p1.translation()[2]
            glVertex2d(p2.translation()[0], p2.translation()[1]);//p2.translation()[2]
            glEnd();
        }
        pangolin::FinishFrame();
        usleep(5000);   // sleep 5 ms
    }
}
//主函数
int main ( int argc, char** argv ) {
    vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> ps1, ps2;
    ifstream file("../compare.txt");
    string line; //按行来读取数据
    vector<Point3d> pEstimated, pGroundTruth;
    while (getline(file, line)) {
        stringstream record(line);
        vector<double> vTmp(16, 0);
        for (auto &v:vTmp)
            record >> v;
        Point3d p1{vTmp[1], vTmp[2], vTmp[3]};//位置
        Eigen::Quaterniond q1{vTmp[4], vTmp[5], vTmp[6], vTmp[7]};//旋转四元数
        Sophus::SE3 SE3_qt1(q1, Eigen::Vector3d(p1.x, p1.y, p1.z));//组成李群(欧式变换群)--estimated
        Point3d p2{vTmp[9], vTmp[10], vTmp[11]};
        Eigen::Quaterniond q2{vTmp[12], vTmp[13], vTmp[14], vTmp[15]};
        Sophus::SE3 SE3_qt2(q2, Eigen::Vector3d(p2.x, p2.y, p2.z));//组成李群(欧式变换群)--groundtruth
        pEstimated.push_back(p1);//求估计到真实的变换矩阵只需要用到位置
        pGroundTruth.push_back(p2);
        ps1.push_back(SE3_qt1);
        ps2.push_back(SE3_qt2);
    }
    DrawTrajectory(ps1,ps2);
    return 0;
}

CmakeLists.txt:

cmake_minimum_required(VERSION 2.8)
project(draw_trajectory)
#set(Sophus_LIBRARIES "/usr/local/libSophus.so")
set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )
set( CMAKE_BUILD_TYPE "Debug" )
#set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR})
#include_directories($ {EIGEN3_INCLUDE_DIRS})
find_package(OpenCV 3.0 QUIET)
if(NOT OpenCV_FOUND)
    find_package(OpenCV 2.4.3 QUIET)
    if(NOT OpenCV_FOUND)
        message(FATAL_ERROR "OpenCV > 2.4.3 not found.")
    endif()
endif()
find_package(Pangolin REQUIRED)
find_package(Sophus REQUIRED)
include_directories("/usr/include/eigen3")
include_directories(
        ${Pangolin_INCLUDE_DIRS}
        ${Sophus_INCLUDE_DIR}
        ${OpenCV_INCLUDE_DIRS}
)
#add_executable(eigenMatrix eigenMatrix.cpp)
add_executable(trajectory tra_icp.cpp)
target_link_libraries(trajectory
        ${Pangolin_LIBRARIES}
        ${Sophus_LIBRARIES}
        ${OpenCV_LIBS}
        )

运行结果截图如下:
视觉SLAM理论与实践5
2) 轨迹通过ICP对齐代码如下:

//
// Created by chengjun on 2019/12/4.
//
#include <sophus/se3.h>
#include <string>
#include <iostream>
#include <fstream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <Eigen/SVD>
#include <chrono>
#include <pangolin/pangolin.h>
using namespace std;
using namespace cv;
using namespace Sophus;
//pangolin画图
void DrawTrajectory(vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses1,vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses2) {
    if (poses1.empty()||poses2.empty()) {
        cerr << "Trajectory is empty!" << endl;
        return;
    }
    // create pangolin window and plot the trajectory
    pangolin::CreateWindowAndBind("Trajectory Viewer", 1024, 768);
    glEnable(GL_DEPTH_TEST);
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
    pangolin::OpenGlRenderState s_cam(
            pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),
            pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0)
    );
    pangolin::View &d_cam = pangolin::CreateDisplay()
            .SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f)
            .SetHandler(new pangolin::Handler3D(s_cam));
    while (pangolin::ShouldQuit() == false) {
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
        d_cam.Activate(s_cam);
        glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
        glLineWidth(2);
        for (size_t i = 0; i < poses1.size() - 1; i++) {
            //glColor3f(1 - (float) i / poses1.size(), 0.0f, (float) i / poses1.size());
            glColor3f(1.0f, 0.0f, 0.0f);
            glBegin(GL_LINES);
            auto p1 = poses1[i], p2 = poses1[i + 1];
            glVertex2d(p1.translation()[0], p1.translation()[1]);//p1.translation()[2]
            glVertex2d(p2.translation()[0], p2.translation()[1]);//p2.translation()[2]
            glEnd();
        }
        for (size_t i = 0; i < poses2.size() - 1; i++) {
            //glColor3f(1 - (float) i / poses2.size(), 0.0f, (float) i / poses2.size());
            glColor3f(0.0f, 0.0f, 0.0f);
            glBegin(GL_LINES);
            auto p1 = poses2[i], p2 = poses2[i + 1];
            glVertex2d(p1.translation()[0], p1.translation()[1]);//p1.translation()[2]
            glVertex2d(p2.translation()[0], p2.translation()[1]);//p2.translation()[2]
            glEnd();
        }
        pangolin::FinishFrame();
        usleep(5000);   // sleep 5 ms
    }
}
//主函数
int main ( int argc, char** argv ) {
    vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> ps1, ps2;
    ifstream file("../compare.txt");
    string line; //按行来读取数据
    vector<Point3d> pEstimated, pGroundTruth;
    while (getline(file, line)) {
        stringstream record(line);
        vector<double> vTmp(16, 0);
        for (auto &v:vTmp)
            record >> v;
        Point3d p1{vTmp[1], vTmp[2], vTmp[3]};//位置
        Eigen::Quaterniond q1{vTmp[4], vTmp[5], vTmp[6], vTmp[7]};//旋转四元数
        Sophus::SE3 SE3_qt1(q1, Eigen::Vector3d(p1.x, p1.y, p1.z));//组成李群(欧式变换群)--estimated
        Point3d p2{vTmp[9], vTmp[10], vTmp[11]};
        Eigen::Quaterniond q2{vTmp[12], vTmp[13], vTmp[14], vTmp[15]};
        Sophus::SE3 SE3_qt2(q2, Eigen::Vector3d(p2.x, p2.y, p2.z));//组成李群(欧式变换群)--groundtruth
        pEstimated.push_back(p1);//求估计到真实的变换矩阵只需要用到位置
        pGroundTruth.push_back(p2);
        ps1.push_back(SE3_qt1);
        ps2.push_back(SE3_qt2);
    }
    //下面是ICP过程,p1=Rp2+t,即为真实到估计之间的变换,之后取逆即为估计到真实之间的变换
    Point3d pMid1, pMid2;     // center of mass
    int N = pEstimated.size();
    for ( int i=0; i<N; i++ )
    {
        pMid1 += pEstimated[i];
        pMid2 += pGroundTruth[i];
    }
    pMid1 = Point3d( pMid1/ N);
    pMid2 = Point3d( pMid2/ N);
    vector<Point3d>     q1 ( N ), q2 ( N ); // remove the center
    for ( int i=0; i<N; i++ )
    {
        q1[i] = pEstimated[i] - pMid1;
        q2[i] = pGroundTruth[i] - pMid2;
    }
    // compute q1*q2^T
    Eigen::Matrix3d W = Eigen::Matrix3d::Zero();
    for ( int i=0; i<N; i++ )
    {
        W=W+Eigen::Vector3d ( q1[i].x, q1[i].y, q1[i].z ) * Eigen::Vector3d ( q2[i].x, q2[i].y, q2[i].z ).transpose();
    }
    cout<<"W="<<W<<endl;
    // SVD on W
    Eigen::JacobiSVD<Eigen::Matrix3d> svd ( W, Eigen::ComputeFullU|Eigen::ComputeFullV );
    Eigen::Matrix3d U = svd.matrixU();
    Eigen::Matrix3d V = svd.matrixV();
    cout<<"U="<<U<<endl;
    cout<<"V="<<V<<endl;
    Eigen::Matrix3d R_ = U* ( V.transpose() );
    Eigen::Vector3d t_ = Eigen::Vector3d ( pMid1.x, pMid1.y, pMid1.z ) - R_ * Eigen::Vector3d ( pMid2.x, pMid2.y, pMid2.z );
    cout<<"R_="<<R_<<endl;
    cout<<"t_="<<t_<<endl;
    //取逆
    Eigen::Matrix3d R=R_.inverse();
    Eigen::Vector3d t=-R*t_;
    SE3 SE3_T(R,t);
    for(auto &p:ps1)
        p=SE3_T*p;
    DrawTrajectory(ps1,ps2);
    return 0;
}

CMakeList.txt与上述一样,运行结果如图:
视觉SLAM理论与实践5

友情提示:代码下载需要C币,请事先判断是否对您有帮助,谨慎下载哦!!!