欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

网络爬虫

程序员文章站 2022-03-05 09:53:53
...
记得在刚找工作时,隔壁的一位同学在面试时豪言壮语曾实现过网络爬虫,当时的景仰之情犹如滔滔江水连绵不绝。后来,在做图片搜索时,需要大量的测试图片,因此萌生了从Amazon中爬取图书封面图片的想法,从网上也吸取了一些前人的经验,实现了一个简单但足够用的爬虫系统。

网络爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组成,其基本架构如下图所示:

[img]
http://images.51cto.com/files/uploadimg/20110309/1015300.png
[/img]


传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。对于垂直搜索来说,聚焦爬虫,即有针对性地爬取特定主题网页的爬虫,更为适合。

本文爬虫程序的核心代码如下:

Java代码



public void crawl() throws Throwable { while (continueCrawling()) { CrawlerUrl url = getNextUrl(); //获取待爬取队列中的下一个URL if (url != null) { printCrawlInfo(); String content = getContent(url); //获取URL的文本信息 //聚焦爬虫只爬取与主题内容相关的网页,这里采用正则匹配简单处理 if (isContentRelevant(content, this.regexpSearchPattern)) { saveContent(url, content); //保存网页至本地 //获取网页内容中的链接,并放入待爬取队列中 Collection urlStrings = extractUrls(content, url); addUrlsToUrlQueue(url, urlStrings); } else { System.out.println(url + " is not relevant ignoring ..."); } //延时防止被对方屏蔽 Thread.sleep(this.delayBetweenUrls); } } closeOutputStream(); }


整个函数由getNextUrl、getContent、isContentRelevant、extractUrls、addUrlsToUrlQueue等几个核心方法组成,下面将一一介绍。先看getNextUrl:

Java代码



private CrawlerUrl getNextUrl() throws Throwable { CrawlerUrl nextUrl = null; while ((nextUrl == null) && (!urlQueue.isEmpty())) { CrawlerUrl crawlerUrl = this.urlQueue.remove(); //doWeHavePermissionToVisit:是否有权限访问该URL,友好的爬虫会根据网站提供的"Robot.txt"中配置的规则进行爬取 //isUrlAlreadyVisited:URL是否访问过,大型的搜索引擎往往采用BloomFilter进行排重,这里简单使用HashMap //isDepthAcceptable:是否达到指定的深度上限。爬虫一般采取广度优先的方式。一些网站会构建爬虫陷阱(自动生成一些无效链接使爬虫陷入死循环),采用深度限制加以避免 if (doWeHavePermissionToVisit(crawlerUrl) && (!isUrlAlreadyVisited(crawlerUrl)) && isDepthAcceptable(crawlerUrl)) { nextUrl = crawlerUrl; // System.out.println("Next url to be visited is " + nextUrl); } } return nextUrl; }

更多的关于robot.txt的具体写法,可参考以下这篇文章:

http://www.bloghuman.com/post/67/

getContent内部使用apache的httpclient 4.1获取网页内容,具体代码如下:

Java代码



private String getContent(CrawlerUrl url) throws Throwable { //HttpClient4.1的调用与之前的方式不同 HttpClient client = new DefaultHttpClient(); HttpGet httpGet = new HttpGet(url.getUrlString()); StringBuffer strBuf = new StringBuffer(); HttpResponse response = client.execute(httpGet); if (HttpStatus.SC_OK == response.getStatusLine().getStatusCode()) { HttpEntity entity = response.getEntity(); if (entity != null) { BufferedReader reader = new BufferedReader( new InputStreamReader(entity.getContent(), "UTF-8")); String line = null; if (entity.getContentLength() > 0) { strBuf = new StringBuffer((int) entity.getContentLength()); while ((line = reader.readLine()) != null) { strBuf.append(line); } } } if (entity != null) { entity.consumeContent(); } } //将url标记为已访问 markUrlAsVisited(url); return strBuf.toString(); }


对于垂直型应用来说,数据的准确性往往更为重要。聚焦型爬虫的主要特点是,只收集和主题相关的数据,这就是isContentRelevant方法的作用。这里或许要使用分类预测技术,为简单起见,采用正则匹配来代替。其主要代码如下:

Java代码



public static boolean isContentRelevant(String content, Pattern regexpPattern) { boolean retValue = false; if (content != null) { //是否符合正则表达式的条件 Matcher m = regexpPattern.matcher(content.toLowerCase()); retValue = m.find(); } return retValue; }


extractUrls的主要作用,是从网页中获取更多的URL,包括内部链接和外部链接,代码如下:

Java代码



public List extractUrls(String text, CrawlerUrl crawlerUrl) { Map urlMap = new HashMap(); extractHttpUrls(urlMap, text); extractRelativeUrls(urlMap, text, crawlerUrl); return new ArrayList(urlMap.keySet()); } //处理外部链接 private void extractHttpUrls(Map urlMap, String text) { Matcher m = httpRegexp.matcher(text); while (m.find()) { String url = m.group(); String[] terms = url.split("a href=\""); for (String term : terms) { // System.out.println("Term = " + term); if (term.startsWith("http")) { int index = term.indexOf("\""); if (index > 0) { term = term.substring(0, index); } urlMap.put(term, term); System.out.println("Hyperlink: " + term); } } } } //处理内部链接 private void extractRelativeUrls(Map urlMap, String text, CrawlerUrl crawlerUrl) { Matcher m = relativeRegexp.matcher(text); URL textURL = crawlerUrl.getURL(); String host = textURL.getHost(); while (m.find()) { String url = m.group(); String[] terms = url.split("a href=\""); for (String term : terms) { if (term.startsWith("/")) { int index = term.indexOf("\""); if (index > 0) { term = term.substring(0, index); } String s = "http://" + host + term; urlMap.put(s, s); System.out.println("Relative url: " + s); } } } }



如此,便构建了一个简单的网络爬虫程序,可以使用以下程序来测试它:

Java代码



public static void main(String[] args) { try { String url = "http://www.amazon.com"; Queue urlQueue = new LinkedList(); String regexp = "java"; urlQueue.add(new CrawlerUrl(url, 0)); NaiveCrawler crawler = new NaiveCrawler(urlQueue, 100, 5, 1000L, regexp); // boolean allowCrawl = crawler.areWeAllowedToVisit(url); // System.out.println("Allowed to crawl: " + url + " " + // allowCrawl); crawler.crawl(); } catch (Throwable t) { System.out.println(t.toString()); t.printStackTrace(); } }



当然,你可以为它赋予更为高级的功能,比如多线程、更智能的聚焦、结合Lucene建立索引等等。更为复杂的情况,可以考虑使用一些开源的蜘蛛程序,比如Nutch或是Heritrix等等,就不在本文的讨论范围了。
相关标签: 搜索引擎