欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

IDEA+maven构建hadoopMR开发环境

程序员文章站 2022-04-16 20:57:47
...
总结一下IDEA+maven构建的开发环境。
我的环境是WIN7(64位) hadoop2.8,3台虚拟机的hadoop集群,两个做datanode,一个nameNode. IDEA是2016.1 ,maven 3.9,java1.7

IDEA+maven 很简单了,跟着引导创建一个新maven项目就可以了。

下面是pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>hadoop.test</groupId>
    <artifactId>hadoop</artifactId>
    <version>1.0-SNAPSHOT</version>
    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <hadoop.version>2.8.0</hadoop.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
    </dependencies>
</project>



首先确保集群开着,运行正常。
然后,把集群上的hadoop包拷贝到windows的目录下,然后创建HADOOP_HOME 环境变量,把bin放到PATH下。
下载window扩展。
http://files.cnblogs.com/files/longshiyVip/hadoop2.6%28x64%29V0.2.zip
这个版本是2.6 64位,我hadoop2.8用着没有问题。
解压后覆盖到bin目录下,把hadoop.dll放入system32中。相关配置文件拷贝到resource目录下,跟集群上保持一致就可以了。
其中需要log4.properties,不然日志打印不出来。
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.Target=System.out
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{ABSOLUTE} %5p %c{1}:%L - %m%n
log4j.rootLogger=INFO, console


开始写代码。
IDEA+maven构建hadoopMR开发环境
            
    
    博客分类: JAVA IDEAHADOOPMapReduce 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;

public class WordCount extends Configured implements Tool {
    public int run(String[] strings) throws Exception {
        try {
            Configuration conf = new Configuration();

            conf.addResource("/core-site.xml");
            conf.addResource("/hdfs-site.xml");
            conf.addResource("/mapred-site.xml");
            conf.addResource("/yarn-site.xml");

            conf.set("mapreduce.job.jar", "c:\\study\\java\\hadooptest\\target\\hadoop-1.0-SNAPSHOT.jar");
            conf.set("mapreduce.framework.name", "yarn");
            conf.set("yarn.resourcemanager.hostname", "master128");
            conf.set("fs.defaultFS", "hdfs://master128:9000");
            conf.set("mapreduce.app-submission.cross-platform", "true");

            Job job = Job.getInstance(conf);
            job.setJarByClass(WordCount.class);

            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(LongWritable.class);

            job.setMapperClass(WcMapper.class);
            job.setReducerClass(WcReducer.class);

            job.setInputFormatClass(TextInputFormat.class);
            job.setOutputFormatClass(TextOutputFormat.class);

            FileInputFormat.setInputPaths(job, "hdfs://master128:9000/zxq/input");
            FileOutputFormat.setOutputPath(job, new Path("hdfs://master128:9000/zxq/output"));

            job.waitForCompletion(true);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return 0;
    }

    public static class WcMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String mVal = value.toString();
            context.write(new Text(mVal), new LongWritable(1));
        }
    }
    public static class WcReducer extends Reducer<Text, LongWritable, Text, LongWritable>{
        @Override
        protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
            long sum = 0;
            for(LongWritable lVal : values){
                sum += lVal.get();
            }
            context.write(key, new LongWritable(sum));
        }
    }
    public static void main(String[] args) throws Exception {
        ToolRunner.run(new WordCount(), args);
    }
}



在java jvm启动参数需要加入hadoop用户名: -DHADOOP_USER_NAME=hadoop 根据自己的实际情况填写,否则会报访问安全问题。
jar包一定要有的
conf.set("mapreduce.job.jar", "c:\\study\\java\\hadooptest\\target\\hadoop-1.0-SNAPSHOT.jar");

下面一些配置根据自己的实际填写,主要是主机名(或者ip)端口,输入输出文件。
 Configuration conf = new Configuration();

            conf.addResource("/core-site.xml");
            conf.addResource("/hdfs-site.xml");
            conf.addResource("/mapred-site.xml");
            conf.addResource("/yarn-site.xml");

            conf.set("mapreduce.job.jar", "c:\\study\\java\\hadooptest\\target\\hadoop-1.0-SNAPSHOT.jar");
            conf.set("mapreduce.framework.name", "yarn");
            conf.set("yarn.resourcemanager.hostname", "master128");
            conf.set("fs.defaultFS", "hdfs://master128:9000");
            conf.set("mapreduce.app-submission.cross-platform", "true");

            Job job = Job.getInstance(conf);
            job.setJarByClass(WordCount.class);

            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(LongWritable.class);

            job.setMapperClass(WcMapper.class);
            job.setReducerClass(WcReducer.class);

            job.setInputFormatClass(TextInputFormat.class);
            job.setOutputFormatClass(TextOutputFormat.class);

            FileInputFormat.setInputPaths(job, "hdfs://master128:9000/zxq/input");
            FileOutputFormat.setOutputPath(job, new Path("hdfs://master128:9000/zxq/output"));





我写的是绝对路径,也就是mvn clean install生成的jar


我在构建这套环境的时候也遇到了很多问题。由于也是在网上看的文章然后自己实践,发现走了不少坑。
1、windows插件的版本,一定要使用自己hadoop的版本。
2、连接问题,输入,输出文件要带上主机:端口然后再路径,hadoop会截取主机和端口然后访问,nameNode.
3、就是安全访问问题,要hadoop的登录用户,最简单的办法就是加jvm启动参数 -DHADOOP_USER_NAME=hadoop。
网上上还有其他一些方法,比如,修改自己window的用户名和hadoop用户保持一致,亦或者更改hdfs文件的权限。
使用HDFS的命令行接口修改相应目录的权限,hadoop fs -chmod 777 /user,后面的/user是要上传文件的路径,不同的情况可能不一样,比如要上传的文件路径为hdfs://namenode/user/xxx.doc,则这样的修改可以,如果要上传的文件路径为hdfs://namenode/java/xxx.doc,则要修改的为hadoop fs -chmod 777 /java或者hadoop fs -chmod 777 /,java的那个需要先在HDFS里面建立Java目录,后面的这个是为根目录调整权限。

按照上述代码,在input下加入一些文件作为wordcount的输入文件。

hadoop dfs -put wordCount.txt /zxq/input

开始执行。
10:16:09,529  INFO RMProxy:123 - Connecting to ResourceManager at master128/172.23.132.84:8032
10:16:09,786  WARN JobResourceUploader:64 - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
10:16:09,924  INFO FileInputFormat:289 - Total input files to process : 1
10:16:09,980  INFO JobSubmitter:200 - number of splits:1
10:16:10,496  INFO JobSubmitter:289 - Submitting tokens for job: job_1509588776406_0004
10:16:10,674  INFO YarnClientImpl:296 - Submitted application application_1509588776406_0004
10:16:10,699  INFO Job:1345 - The url to track the job: http://master128:8088/proxy/application_1509588776406_0004/
10:16:10,700  INFO Job:1390 - Running job: job_1509588776406_0004
10:16:15,835  INFO Job:1411 - Job job_1509588776406_0004 running in uber mode : false
10:16:15,839  INFO Job:1418 -  map 0% reduce 0%
10:16:21,069  INFO Job:1418 -  map 100% reduce 0%
10:16:26,122  INFO Job:1418 -  map 100% reduce 100%
10:16:26,162  INFO Job:1429 - Job job_1509588776406_0004 completed successfully
10:16:26,286  INFO Job:1436 - Counters: 49
	File System Counters
		FILE: Number of bytes read=363
		FILE: Number of bytes written=273713
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=257
		HDFS: Number of bytes written=162
		HDFS: Number of read operations=6
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=2
	Job Counters 
		Launched map tasks=1
		Launched reduce tasks=1
		Data-local map tasks=1
		Total time spent by all maps in occupied slots (ms)=2508
		Total time spent by all reduces in occupied slots (ms)=2528
		Total time spent by all map tasks (ms)=2508
		Total time spent by all reduce tasks (ms)=2528
		Total vcore-milliseconds taken by all map tasks=2508
		Total vcore-milliseconds taken by all reduce tasks=2528
		Total megabyte-milliseconds taken by all map tasks=2568192
		Total megabyte-milliseconds taken by all reduce tasks=5177344
	Map-Reduce Framework
		Map input records=21
		Map output records=21
		Map output bytes=315
		Map output materialized bytes=363
		Input split bytes=110
		Combine input records=0
		Combine output records=0
		Reduce input groups=18
		Reduce shuffle bytes=363
		Reduce input records=21
		Reduce output records=18
		Spilled Records=42
		Shuffled Maps =1
		Failed Shuffles=0
		Merged Map outputs=1
		GC time elapsed (ms)=451
		CPU time spent (ms)=2930
		Physical memory (bytes) snapshot=487813120
		Virtual memory (bytes) snapshot=4467601408
		Total committed heap usage (bytes)=455606272
	Shuffle Errors
		BAD_ID=0
		CONNECTION=0
		IO_ERROR=0
		WRONG_LENGTH=0
		WRONG_MAP=0
		WRONG_REDUCE=0
	File Input Format Counters 
		Bytes Read=147
	File Output Format Counters 
		Bytes Written=162


至此就结束了。





  • IDEA+maven构建hadoopMR开发环境
            
    
    博客分类: JAVA IDEAHADOOPMapReduce 
  • 大小: 21.4 KB