欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

数据分布决定SQL写法

程序员文章站 2022-04-16 17:17:48
...

这是2016年8月份上海MOORACLE大会上陈宏义老师(老K)分享的一个案例,将一个merge SQL,通过改写成plsql的方式,大大提高了执行效率。 老虎刘在看到这个案例的时候,开始没有注意到执行计划里面显示的各表实际记录数,不认为plsql的改写方式比分析函数的写法更高效,还与陈老师有过几次邮件讨论,直到后来仔细查看了执行计划。

原SQL如下:

merge into t_customer c using

(

select a.cstno, a.amount from t_trade a,

(select cstno,max(trade_date) trade_date from t_trade

group by cstno) b

where a.cstno = b.cstno and a.trade_date=b.trade_date

) m

on(c.cstno = m.cstno)

when matched then

update set c.amount = m.amount;

这个SQL是将用户交易明细表(t_trade )的最近的一笔消费额,更新到用户信息表(t_customer)的消费额字段,使用的是merge操作。

执行计划:
数据分布决定SQL写法
老虎刘注:

在没有掌握分析函数的写法前,SQL的红色部分是group by后取其他字段信息的一个较为常见的写法,也是这个SQL执行效率差的根本原因。

原SQL还有一个隐患,就是如果t_trade的某个cstno对应的最大trade_date有重复,那么这个SQL会报ORA-30926 错误无法执行。

如果不仔细看执行计划(两表的真实数据量信息),这种SQL的惯用优化方法是使用分析函数改写:

改写方法1:

merge into t_customer c using

(

select a.cstno,a.amount from

(select trade_date,cstno,amount,

row_number()over(partition by cstno order by trade_date desc) RNO from t_trade)a

where RNO=1

)  m

on(c.cstno = m.cstno)

when matched then

update set c.amount = m.amount;

这种改写方法会比原SQL效率提高很多,而且不存在某个cstno对应的max trade_date 重复时报错的问题。

但是陈老师没有使用分析函数的改写方法,而是根据两表数据量相差较大的特点,将SQL改写成一段更为高效的plsql:

改写方法2:

declare

vamount number;

begin

for v in (select * from t_customer )

loop

select amount into vamount from

(select amount from t_trade where cstno=v.cstno order by trade_date desc)

where rownum<2;

update t_customer set amount = vamount where cstno=v.cstno;

end loop

commit;

end;

根据原SQL的执行计划我们知道,t_customer表的记录数比较少,只有1000多条,而t_trade表有1000万条,比例为1:10000(不知道这是真实数据还是测试数据,只有1000多个用户,而且一个用户平均1万个消费明细,看起来不像真实数据)。

在这样一个两表数据相差较大的特殊情况下,plsql写法确实是比分析函数的写法要高效。这个改写非常巧妙。

我们再来分析一下这两种改写的优缺点:

1、plsql的改写方式,适合在t_customer表比较小,而且t_customer 和 t_trade 两表的记录数比例比较大的情况下,执行效率才会比分析函数的改写高一些。在本例中,如果t_customer表的记录数是10万,那么分析函数的写法反而要比plsql的写法快上几十到上百倍。

3、plsql这种改写的前提是必须存在t_trade表cstno + trade_date 两字段的联合索引。而分析函数的改写就不需要任何索引的支持。

4、对于t_trade这种千万记录级别的表,使用分析函数的写法可以通过开启并行来提速;plsql的改写,如果要提高效率,需要先将t_customer表按cstno分组,用多个session并发执行。

我们再来看看,陈老师的这段plsql,是不是可以用单个sql来实现,我做了一个尝试,SQL代码如下:

merge into t_customer c using

(

select tc.cstno,

(select amount

from t_trade td1

where td1.cstno=tc.cstno and td1.trade_date = (select max(trade_date) from t_trade td2 where tc.cstno = td2.cstno) and rownum=1 ) as amount

from t_customer tc

)  m

on(c.cstno = m.cstno)

when matched then

update set c.amount = m.amount;

执行计划大致如下:

数据分布决定SQL写法
这种写法也是需要t_trade表存在cstno+trade_date 联合索引(IDX_T_TRADE),而且T_customer 表的数据量远低于T_trade。

根据执行计划,这个sql的执行效率应该比plsql写法的效率不相上下。

总结:

SQL优化,除了要避免低效的SQL写法,主要还是要看表的数据量与数据分布情况,plsql的改写方法,在少数比较特殊的情况下会体现出较高的效率,在某些数据分布的情况下,效率可能还不如原SQL。但是,优化思路非常值得借鉴。

而分析函数的改写方式,则不论数据如何分布,都会比原SQL要高效,通用性更强。

对于本例改写前的SQL,应该还有很多开发人员和DBA在使用,在了解了分析函数的使用方法后,原SQL的低效写法就应该被彻底抛弃了。

最后的plsql改写成单SQL,逻辑看起来比较复杂难懂,一般不会用到这样的改写,大家了解一下就好了。

还是那句话,优化无定式,优化器是死的,人脑是活的,只有掌握了原理,才能让SQL执行效率越来越高。

转载自:

http://www.yunweipai.com/archives/18609.html

相关标签: 函数 sql