欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

android分析之Parcel

程序员文章站 2022-04-15 17:44:29
...

将数据打包,跨进程传输(通过Binder)。看看这货究竟是啥玩意:

Parcel.java :

public final class Parcel {
    private static final boolean DEBUG_RECYCLE = false;
    private static final String TAG = "Parcel";

    @SuppressWarnings({"UnusedDeclaration"})
    private int mNativePtr; // used by native code,非static 

    /**
     * Flag indicating if {@link #mNativePtr} was allocated by this object,
     * indicating that we're responsible for its lifecycle.
     */
    private boolean mOwnsNativeParcelObject;//非static,从上面解释可以看到,它标识"mNativePtr”是否可用,如果是从NativeCode分配的,则要负责它的生命周期

    private RuntimeException mStack;

    private static final int POOL_SIZE = 6;
    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];//static,类拥有,下同。作为Parcel的缓冲池使用。
    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];

  下面看调用Parcel的obtain()时的过程:

    static protected final Parcel obtain() {
        final Parcel[] pool = sHolderPool;//尝试从sHolderPool这个缓冲池取
        synchronized (pool) {
            Parcel p;
            for (int i=0; i<POOL_SIZE; i++) {//POOL_SIZE为6
                p = pool[i];
                if (p != null) {
                    pool[i] = null;
                    if (DEBUG_RECYCLE) {
                        p.mStack = new RuntimeException();
                    }
                    p.init(obj);//找到一个可用的(非null),初始化这个Parcel
                    return p;
                }
            }
        }
        return new Parcel(0);//如果6个都不可用(即缓冲池空了),则新new一个出来
    }

    private Parcel(int nativePtr) {
        if (DEBUG_RECYCLE) {
            mStack = new RuntimeException();
        }
        //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
        init(nativePtr);//简单调用
    }

    private void init(int nativePtr) {
        if (nativePtr != 0) {
            mNativePtr = nativePtr;
            mOwnsNativeParcelObject = false;
        } else {
            mNativePtr = nativeCreate();//调用Native CODE
            mOwnsNativeParcelObject = true;//表明,需要负责本Parcel对象的生命周期。后面有几个方法会根据该boolean值决定是否释放Native CODE生成的对象。
        }
    }

  小结:Parcel(.java)逻辑很简单,从sHolderPool或者sOwnedPool中找不等于null的,取出来重新使用。否则,调用Native Code重新生成一个Parcel。在这里,有mNativePtr和mOwnsNativeParcelObject两个对象的成员变量,用来标识所生成的Native层的Parcel是否需要释放/销毁。

Parcel.h(.cpp)分析:

在Parcel.h中,存在许多字段。实际上,可以将Parcel看作管理一块内存的一个管理者。

    status_t            mError;
    uint8_t*            mData;//指针,从字面上看应该是指向数据的指针
    size_t              mDataSize;//表明数据大小,已经存储的数据大小
    size_t              mDataCapacity;//应该是内存空间的容量
    mutable size_t      mDataPos;//mutable修饰,说明这个变量要及时反映出最新值,类比数组中position下标
size_t* mObjects;//指针,可以看作数组。其存储的是每个保存在Parcel对象所申请的内存的大小 size_t mObjectsSize;//与上面数组配合使用 size_t mObjectsCapacity; mutable size_t mNextObjectHint; mutable bool mFdsKnown; mutable bool mHasFds; bool mAllowFds; release_func mOwner; void* mOwnerCookie;

  从上面各个字段来看,还是很经典的内存管理方式,这样一般有:内存起始地址(对应上面mData)、内存总容量(对应mDataCapacity)、内存已用容量(对应mDataSize)、当前可用的内存位置(mDataPos)。在Parcel里还更加细分了,每个存储在内存中的对象大小。粒度更细。

Parcel::Parcel()//构造函数
{
    initState();
}
...
void Parcel::initState()//简单给各个成员变量赋初值
{
    mError = NO_ERROR;
    mData = 0;
    mDataSize = 0;
    mDataCapacity = 0;
    mDataPos = 0;
    ALOGV("initState Setting data size of %p to %d\n", this, mDataSize);
    ALOGV("initState Setting data pos of %p to %d\n", this, mDataPos);
    mObjects = NULL;
    mObjectsSize = 0;
    mObjectsCapacity = 0;
    mNextObjectHint = 0;
    mHasFds = false;
    mFdsKnown = true;
    mAllowFds = true;
    mOwner = NULL;
}

  在setDataCapacity、setDataSize等函数中,调用到continueWrite,这个函数是真正的申请内存函数:

status_t Parcel::continueWrite(size_t desired)
{
    // If shrinking, first adjust for any objects that appear
    // after the new data size.
    size_t objectsSize = mObjectsSize;
    if (desired < mDataSize) {//表明需要缩小申请的内存容量
        if (desired == 0) {
            objectsSize = 0;
        } else {
            while (objectsSize > 0) {
                if (mObjects[objectsSize-1] < desired)//找到一个对象的内存大小小于所要申请的内存大小
                    break;
                objectsSize--;
            }
        }
    }
    
    if (mOwner) {//mOwner是一个回调函数指针
        // If the size is going to zero, just release the owner's data.
        if (desired == 0) {
            freeData();//释放数据
            return NO_ERROR;
        }

        // If there is a different owner, we need to take
        // posession.
        uint8_t* data = (uint8_t*)malloc(desired);//分配内存
        if (!data) {
            mError = NO_MEMORY;
            return NO_MEMORY;
        }
        size_t* objects = NULL;
        
        if (objectsSize) {
            objects = (size_t*)malloc(objectsSize*sizeof(size_t));//分配objectSize*sizeof(size_t)大小的内存
            if (!objects) {
                mError = NO_MEMORY;
                return NO_MEMORY;
            }

            // Little hack to only acquire references on objects
            // we will be keeping.
            size_t oldObjectsSize = mObjectsSize;
            mObjectsSize = objectsSize;
            acquireObjects();//给各个对象增加强、弱引用计数——加入需要的话
            mObjectsSize = oldObjectsSize;
        }
        
        if (mData) {
            memcpy(data, mData, mDataSize < desired ? mDataSize : desired);//拷贝到data(新申请的)
        }
        if (objects && mObjects) {
            memcpy(objects, mObjects, objectsSize*sizeof(size_t));
        }
        //ALOGI("Freeing data ref of %p (pid=%d)\n", this, getpid());
        mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
        mOwner = NULL;

        mData = data;
        mObjects = objects;
        mDataSize = (mDataSize < desired) ? mDataSize : desired;
        ALOGV("continueWrite Setting data size of %p to %d\n", this, mDataSize);
        mDataCapacity = desired;
        mObjectsSize = mObjectsCapacity = objectsSize;
        mNextObjectHint = 0;

    } else if (mData) {
        if (objectsSize < mObjectsSize) {
            // Need to release refs on any objects we are dropping.
            const sp<ProcessState> proc(ProcessState::self());
            for (size_t i=objectsSize; i<mObjectsSize; i++) {
                const flat_binder_object* flat
                    = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
                if (flat->type == BINDER_TYPE_FD) {
                    // will need to rescan because we may have lopped off the only FDs
                    mFdsKnown = false;
                }
                release_object(proc, *flat, this);//尝试释放对象
            }
            size_t* objects =
                (size_t*)realloc(mObjects, objectsSize*sizeof(size_t));
            if (objects) {
                mObjects = objects;
            }
            mObjectsSize = objectsSize;
            mNextObjectHint = 0;
        }

        // We own the data, so we can just do a realloc().
        if (desired > mDataCapacity) {
            uint8_t* data = (uint8_t*)realloc(mData, desired);//在原mData位置上重新分配内存
            if (data) {
                mData = data;
                mDataCapacity = desired;
            } else if (desired > mDataCapacity) {
                mError = NO_MEMORY;
                return NO_MEMORY;
            }
        } else {
            if (mDataSize > desired) {
                mDataSize = desired;
                ALOGV("continueWrite Setting data size of %p to %d\n", this, mDataSize);
            }
            if (mDataPos > desired) {
                mDataPos = desired;
                ALOGV("continueWrite Setting data pos of %p to %d\n", this, mDataPos);
            }
        }
        
    } else {
        // This is the first data.  Easy!
        uint8_t* data = (uint8_t*)malloc(desired);//直接申请所需大小
        if (!data) {
            mError = NO_MEMORY;
            return NO_MEMORY;
        }
        
        if(!(mDataCapacity == 0 && mObjects == NULL
             && mObjectsCapacity == 0)) {
            ALOGE("continueWrite: %d/%p/%d/%d", mDataCapacity, mObjects, mObjectsCapacity, desired);
        }
        
        mData = data;
        mDataSize = mDataPos = 0;
        ALOGV("continueWrite Setting data size of %p to %d\n", this, mDataSize);
        ALOGV("continueWrite Setting data pos of %p to %d\n", this, mDataPos);
        mDataCapacity = desired;
    }

    return NO_ERROR;
}

  小结:上面内存分配管理比较细致,总的来说就是“要么新申请一块内存”、“要么复用一块内存”,“释放内存”,外加对象的生命周期的控制。