算法分析
一般而言,需要考虑的因素有以下四点:
1.待排序的记录数目n的大小;
2.记录本身数据量的大小,也就是记录中除关键字外的其他信息量的大小;
3.关键字的结构及其分布情况;
4.对排序稳定性的要求。
设待排序元素的个数为n
1)当n量级为万到十万级:若内存有限,不要求稳定性:快速排序。若内存空间允许,且要求稳定性:归并排序
2)当n量级为1000以下,采用直接插入排序
3)当n量级为1000以上,5000以下,采用希尔排序。
4)当n量级为百万级别,使用堆排序。堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。
插入排序:
具体算法描述如下:
- 从第一个元素开始,该元素可以认为已经被排序
- 取出下一个元素,在已经排序的元素序列中从后向前扫描
- 如果该元素(已排序)大于新元素,将该元素移到下一位置
- 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
- 将新元素插入到该位置后
- 重复步骤2~5
void InsertionSort(int A[], int n)
{
for (int i = 1; i < n; i++) // 类似抓扑克牌排序
{
int get = A[i]; // 右手抓到一张扑克牌
int j = i - 1; // 拿在左手上的牌总是排序好的
while (j >= 0 && A[j] > get) // 将抓到的牌与手牌从右向左进行比较
{
A[j + 1] = A[j]; // 如果该手牌比抓到的牌大,就将其右移
j--;
}
A[j + 1] = get; // 直到该手牌比抓到的牌小(或二者相等),将抓到的牌插入到该手牌右边(相等元素的相对次序未变,所以插入排序是稳定的)
}
}
快速排序:
第一步:首先我们从数组的left位置取出该数(20)作为基准(base)参照物。
第二步:从数组的right位置向前找,一直找到比(base)小的数,如果找到,将此数赋给left位置(也就是将10赋给20), 此时数组为:10,40,50,10,60,
left和right指针分别为前后的10。
第三步:从数组的left位置向后找,一直找到比(base)大的数,如果找到,将此数赋给right的位置(也就是40赋给10),此时数组为:10,40,50,40,60,
left和right指针分别为前后的40。
第四步:重复“第二,第三“步骤,直到left和right指针重合,最后将(base)插入到40的位置,此时数组值为: 10,20,50,40,60,至此完成一次排序。
第五步:此时20已经潜入到数组的内部,20的左侧一组数都比20小,20的右侧作为一组数都比20大,以20为切入点对左右两边数按照"第一,第二,第三,第四"步骤进行,最终快排大功告成。
#include <stdio.h>
int a[101],n;//定义全局变量,这两个变量需要在子函数中使用
void quicksort(int left,int right)
{
int i,j,t,temp;
if(left>right)
return;
temp=a[left]; //temp中存的就是基准数
i=left;
j=right;
while(i!=j)
{
//顺序很重要,要先从右边开始找
while(a[j]>=temp && i<j)
j--;
//再找右边的
while(a[i]<=temp && i<j)
i++;
//交换两个数在数组中的位置
if(i<j)
{
t=a[i];
a[i]=a[j];
a[j]=t;
}
}
//最终将基准数归位
a[left]=a[i];
a[i]=temp;
quicksort(left,i-1);//继续处理左边的,这里是一个递归的过程
quicksort(i+1,right);//继续处理右边的 ,这里是一个递归的过程
}
堆排序:
堆排序的基本思想是:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了
void Swap(int A[], int i, int j)
{
int temp = A[i];
A[i] = A[j];
A[j] = temp;
}
void Heapify(int A[], int i, int size) // 从A[i]向下进行堆调整
{
int left_child = 2 * i + 1; // 左孩子索引
int right_child = 2 * i + 2; // 右孩子索引
int max = i; // 选出当前结点与其左右孩子三者之中的最大值
if (left_child < size && A[left_child] > A[max])
max = left_child;
if (right_child < size && A[right_child] > A[max])
max = right_child;
if (max != i)
{
Swap(A, i, max); // 把当前结点和它的最大(直接)子节点进行交换
Heapify(A, max, size); // 递归调用,继续从当前结点向下进行堆调整
}
}
int BuildHeap(int A[], int n) // 建堆,时间复杂度O(n)
{
int heap_size = n;
for (int i = heap_size / 2 - 1; i >= 0; i--) // 从每一个非叶结点开始向下进行堆调整
Heapify(A, i, heap_size);
return heap_size;
}
void HeapSort(int A[], int n)
{
int heap_size = BuildHeap(A, n); // 建立一个最大堆
while (heap_size > 1) // 堆(无序区)元素个数大于1,未完成排序
{
// 将堆顶元素与堆的最后一个元素互换,并从堆中去掉最后一个元素
// 此处交换操作很有可能把后面元素的稳定性打乱,所以堆排序是不稳定的排序算法
Swap(A, 0, --heap_size);
Heapify(A, 0, heap_size); // 从新的堆顶元素开始向下进行堆调整,时间复杂度O(logn)
}
}
归并:
归并排序的实现分为递归实现与非递归(迭代)实现。递归实现的归并排序是算法设计中分治策略的典型应用,我们将一个大问题分割成小问题分别解决,然后用所有小问题的答案来解决整个大问题。非递归(迭代)实现的归并排序首先进行是两两归并,然后四四归并,然后是八八归并,一直下去直到归并了整个数组。
归并排序算法主要依赖归并(Merge)操作。归并操作指的是将两个已经排序的序列合并成一个序列的操作,归并操作步骤如下:
- 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
- 设定两个指针,最初位置分别为两个已经排序序列的起始位置
- 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
- 重复步骤3直到某一指针到达序列尾
- 将另一序列剩下的所有元素直接复制到合并序列尾
void Merge(int A[], int left, int mid, int right)// 合并两个已排好序的数组A[left...mid]和A[mid+1...right]
{
int len = right - left + 1;
int *temp = new int[len]; // 辅助空间O(n)
int index = 0;
int i = left; // 前一数组的起始元素
int j = mid + 1; // 后一数组的起始元素
while (i <= mid && j <= right)
{
temp[index++] = A[i] <= A[j] ? A[i++] : A[j++]; // 带等号保证归并排序的稳定性
}
while (i <= mid)
{
temp[index++] = A[i++];
}
while (j <= right)
{
temp[index++] = A[j++];
}
for (int k = 0; k < len; k++)
{
A[left++] = temp[k];
}
}
void MergeSortRecursion(int A[], int left, int right) // 递归实现的归并排序(自顶向下)
{
if (left == right) // 当待排序的序列长度为1时,递归开始回溯,进行merge操作
return;
int mid = (left + right) / 2;
MergeSortRecursion(A, left, mid);
MergeSortRecursion(A, mid + 1, right);
Merge(A, left, mid, right);
}
void MergeSortIteration(int A[], int len) // 非递归(迭代)实现的归并排序(自底向上)
{
int left, mid, right;// 子数组索引,前一个为A[left...mid],后一个子数组为A[mid+1...right]
for (int i = 1; i < len; i *= 2) // 子数组的大小i初始为1,每轮翻倍
{
left = 0;
while (left + i < len) // 后一个子数组存在(需要归并)
{
mid = left + i - 1;
right = mid + i < len ? mid + i : len - 1;// 后一个子数组大小可能不够
Merge(A, left, mid, right);
left = right + 1; // 前一个子数组索引向后移动
}
}
}
桶排序: 这个算法就好比有11个桶,编号从0~10。每出现一个数,就将对应编号的桶中的放一个小旗子,最后只要数数每个桶中有几个小旗子就OK了。此处的每一个桶的作用其实就是“标记”每个数出现的次数,
#include <stdio.h>
int main()
{
int book[1001],i,j,t,n;
for(i=0;i<=1000;i++)
book[i]=0;
scanf("%d",&n);//输入一个数n,表示接下来有n个数
for(i=1;i<=n;i++)//循环读入n个数,并进行桶排序
{
scanf("%d",&t); //把每一个数读到变量t中
book[t]++; //进行计数,对编号为t的桶放一个小旗子
}
for(i=1000;i>=0;i--) //依次判断编号1000~0的桶
for(j=1;j<=book[i];j++) //出现了几次就将桶的编号打印几次
printf("%d ",i);
getchar();getchar();
return 0;
}
排序之外部排序
有时,待排序的文件很大,计算机内存不能容纳整个文件,这时候对文件就不能使用内部排序了(这里做一下说明,其实所有的排序都是在内存中做的,这里说的内部排序是指待排序的内容在内存中就可以完成,而外部排序是指待排序的内容不能在内存中一下子完成,它需要做内外存的内容交换),外部排序常采用的排序方法也是归并排序,这种归并方法由两个不同的阶段组成:
1、采用适当的内部排序方法对输入文件的每个片段进行排序,将排好序的片段(成为归并段)写到外部存储器中(通常由一个可用的磁盘作为临时缓冲区),这样临时缓冲区中的每个归并段的内容是有序的。
2、利用归并算法,归并第一阶段生成的归并段,直到只剩下一个归并段为止。
例如要对外存中4500个记录进行归并,而内存大小只能容纳750个记录,在第一阶段,我们可以每次读取750个记录进行排序,这样可以分六次读取,进行排序,可以得到六个有序的归并段,如下图:
每个归并段的大小是750个记录,记住,这些归并段已经全部写到临时缓冲区(由一个可用的磁盘充当)内了,这是第一步的排序结果。
完成第二步该怎么做呢?这时候归并算法就有用处了,算法描述如下:
1、将内存空间划分为三份,每份大小250个记录,其中两个用作输入缓冲区,另外一个用作输出缓冲区。首先对Segment_1和Segment_2进行归并,先从每个归并段中读取250个记录到输入缓冲区,对其归并,归并结果放到输出缓冲区,当输出缓冲区满后,将其写道临时缓冲区内,如果某个输入缓冲区空了,则从相应的归并段中再读取250个记录进行继续归并,反复以上步骤,直至Segment_1和Segment_2全都排好序,形成一个大小为1500的记录,然后对Segment_3和Segment_4、Segment_5和Segment_6进行同样的操作。
2、对归并好的大小为1500的记录进行如同步骤1一样的操作,进行继续排序,直至最后形成大小为4500的归并段,至此,排序结束。
排序之外部排序
有时,待排序的文件很大,计算机内存不能容纳整个文件,这时候对文件就不能使用内部排序了(这里做一下说明,其实所有的排序都是在内存中做的,这里说的内部排序是指待排序的内容在内存中就可以完成,而外部排序是指待排序的内容不能在内存中一下子完成,它需要做内外存的内容交换),外部排序常采用的排序方法也是归并排序,这种归并方法由两个不同的阶段组成:
1、采用适当的内部排序方法对输入文件的每个片段进行排序,将排好序的片段(成为归并段)写到外部存储器中(通常由一个可用的磁盘作为临时缓冲区),这样临时缓冲区中的每个归并段的内容是有序的。
2、利用归并算法,归并第一阶段生成的归并段,直到只剩下一个归并段为止。
例如要对外存中4500个记录进行归并,而内存大小只能容纳750个记录,在第一阶段,我们可以每次读取750个记录进行排序,这样可以分六次读取,进行排序,可以得到六个有序的归并段,如下图:
每个归并段的大小是750个记录,记住,这些归并段已经全部写到临时缓冲区(由一个可用的磁盘充当)内了,这是第一步的排序结果。
完成第二步该怎么做呢?这时候归并算法就有用处了,算法描述如下:
1、将内存空间划分为三份,每份大小250个记录,其中两个用作输入缓冲区,另外一个用作输出缓冲区。首先对Segment_1和Segment_2进行归并,先从每个归并段中读取250个记录到输入缓冲区,对其归并,归并结果放到输出缓冲区,当输出缓冲区满后,将其写道临时缓冲区内,如果某个输入缓冲区空了,则从相应的归并段中再读取250个记录进行继续归并,反复以上步骤,直至Segment_1和Segment_2全都排好序,形成一个大小为1500的记录,然后对Segment_3和Segment_4、Segment_5和Segment_6进行同样的操作。
2、对归并好的大小为1500的记录进行如同步骤1一样的操作,进行继续排序,直至最后形成大小为4500的归并段,至此,排序结束。
可以用一个图示表示上述算法的归并效果:
以上对外部排序如何使用归并算法进行排序进行了简要总结,提高外部排序需要考虑以下问题:
1、如何减少排序所需的归并趟数。
2、如果高效利用程序缓冲区,使得输入、输出和CPU运行尽可能地重叠。
3、如何生成初始归并段(Segment)和如何对归并段进行归并。
提高外部排序需要考虑以下问题:
1、如何减少排序所需的归并趟数。
2、如果高效利用程序缓冲区,使得输入、输出和CPU运行尽可能地重叠。
3、如何生成初始归并段(Segment)和如何对归并段进行归并。
上一篇: jquery怎样才能确定滚动事件的方向
下一篇: 简易实现HTTPS之自签名证书