欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

接口限流算法总结

程序员文章站 2022-04-12 23:23:46
...

           在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流。缓存的目的是提升系统访问速度和增大系统能处理的容量,可谓是抗高并发流量的银弹;而降级是当服务出问题或者影响到核心流程的性能则需要暂时屏蔽掉,待高峰或者问题解决后再打开;而有些场景并不能用缓存和降级来解决,比如稀缺资源(秒杀、抢购)、写服务(如评论、下单)、频繁的复杂查询(评论的最后几页),因此需有一种手段来限制这些场景的并发/请求量,即限流。

计数器算法

接口限流算法总结

 

public class CounterDemo {
    public long timeStamp = getNowTime();
    public int reqCount = 0;
    public final int limit = 100; // 时间窗口内最大请求数
    public final long interval = 1000; // 时间窗口ms
    public boolean grant() {
        long now = getNowTime();
        if (now < timeStamp + interval) {
            // 在时间窗口内
            reqCount++;
            // 判断当前时间窗口内是否超过最大请求控制数
            return reqCount <= limit;
        }
        else {
            timeStamp = now;
            // 超时后重置
            reqCount = 1;
            return true;
        }
    }
}


       从上图中我们可以看到,假设有一个恶意用户,他在0:59时,瞬间发送了100个请求,并且1:00又瞬间发送了100个请求,那么其实这个用户在1秒里面,瞬间发送了200个请求。我们刚才规定的是1分钟最多100个请求,也就是每秒钟最多1.7个请求,用户通过在时间窗口的重置节点处突发请求,可以瞬间超过我们的速率限制。用户有可能通过算法的这个漏洞,瞬间压垮我们的应用。

聪明的朋友可能已经看出来了,刚才的问题其实是因为我们统计的精度太低。那么如何很好地处理这个问题呢?或者说,如何将临界问题的影响降低呢?我们可以看下面的滑动窗口算法。

滑动窗口

      滑动窗口,又称rolling window。为了解决这个问题,我们引入了滑动窗口算法。如果学过TCP网络协议的话,那么一定对滑动窗口这个名词不会陌生。下面这张图,很好地解释了滑动窗口算法:

接口限流算法总结

在上图中,整个红色的矩形框表示一个时间窗口,在我们的例子中,一个时间窗口就是一分钟。然后我们将时间窗口进行划分,比如图中,我们就将滑动窗口划成了6格,所以每格代表的是10秒钟。每过10秒钟,我们的时间窗口就会往右滑动一格。每一个格子都有自己独立的计数器counter,比如当一个请求在0:35秒的时候到达,那么0:30~0:39对应的counter就会加1。

那么滑动窗口怎么解决刚才的临界问题的呢?我们可以看上图,0:59到达的100个请求会落在灰色的格子中,而1:00到达的请求会落在橘黄色的格子中。当时间到达1:00时,我们的窗口会往右移动一格,那么此时时间窗口内的总请求数量一共是200个,超过了限定的100个,所以此时能够检测出来触发了限流。

我再来回顾一下刚才的计数器算法,我们可以发现,计数器算法其实就是滑动窗口算法。只是它没有对时间窗口做进一步地划分,所以只有1格。

由此可见,当滑动窗口的格子划分的越多,那么滑动窗口的滚动就越平滑,限流的统计就会越精确。

漏桶算法
 
     从图中我们可以看到,整个算法其实十分简单。首先,我们有一个固定容量的桶,有水流进来,也有水流出去。对于流进来的水来说,我们无法预计一共有多少水会流进来,也无法预计水流的速度。但是对于流出去的水来说,这个桶可以固定水流出的速率。而且,当桶满了之后,多余的水将会溢出。

我们将算法中的水换成实际应用中的请求,我们可以看到漏桶算法天生就限制了请求的速度。当使用了漏桶算法,我们可以保证接口会以一个常速速率来处理请求。所以漏桶算法天生不会出现临界问题。具体的伪代码实现如下:

接口限流算法总结

public class LeakyDemo {
    public long timeStamp = getNowTime();
    public int capacity; // 桶的容量
    public int rate; // 水漏出的速度
    public int water; // 当前水量(当前累积请求数)
    public boolean grant() {
        long now = getNowTime();
        water = max(0, water - (now - timeStamp) * rate); // 先执行漏水,计算剩余水量
        timeStamp = now;
        if ((water + 1) < capacity) {
            // 尝试加水,并且水还未满
            water += 1;
            return true;
        }
        else {
            // 水满,拒绝加水
            return false;
        }
    }
}


令牌桶算法
 
     令牌桶算法,又称token bucket。为了理解该算法,我们再来看一下*上对该算法的示意图:

接口限流算法总结

从图中我们可以看到,令牌桶算法比漏桶算法稍显复杂。首先,我们有一个固定容量的桶,桶里存放着令牌(token)。桶一开始是空的,token以一个固定的速率r往桶里填充,直到达到桶的容量,多余的令牌将会被丢弃。每当一个请求过来时,就会尝试从桶里移除一个令牌,如果没有令牌的话,请求无法通过。

public class TokenBucketDemo {
    public long timeStamp = getNowTime();
    public int capacity; // 桶的容量
    public int rate; // 令牌放入速度
    public int tokens; // 当前令牌数量
    public boolean grant() {
        long now = getNowTime();
        // 先添加令牌
        tokens = min(capacity, tokens + (now - timeStamp) * rate); 
        timeStamp = now;
        if (tokens < 1) {
            // 若不到1个令牌,则拒绝
            return false;
        }
        else {
            // 还有令牌,领取令牌
            tokens -= 1;
            return true;
        }
    }
}

 

相关标签: 面试问题总结