欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

1、Flink快速入门(Quickstart)

程序员文章站 2022-04-11 18:19:03
...

Flink官方文档:https://ci.apache.org/projects/flink/flink-docs-release-1.5/quickstart/setup_quickstart.html

本文档只讲解Flink在Linux系统中的安装使用。Windows用户,请查看官方文档:

https://ci.apache.org/projects/flink/flink-docs-release-1.5/start/flink_on_windows.html

1.1下载并启动Flink

(1)检查JDK。

为了能够运行Flink,唯一的要求是安装一个有效的Java8.x。

可以通过以下命令来检查Java是否正确安装:

[aaa@qq.com ~]$ java -version

如果有Java8,将输出如下结果:

java version "1.8.0_171"
Java(TM) SE Runtime Environment (build 1.8.0_171-b11)
Java HotSpot(TM) 64-Bit Server VM (build 25.171-b11, mixed mode)

(2)下载Flink。

Flink下载:http://flink.apache.org/downloads.html

解压下载的文件:

[aaa@qq.com core]$ tar -zxvf flink-1.5.1-bin-hadoop27-scala_2.11.tgz

为使用方便,将解压后的目录更名为flink:

[aaa@qq.com core]$ mv flink-1.5.1 flink

(3)启动Flink。

启动本地Flink集群:

[aaa@qq.com flink]$ ./bin/start-cluster.sh
Starting cluster.
Starting standalonesession daemon on host rdpecore1.
Starting taskexecutor daemon on host rdpecore1.

(4)验证Flink是否正常启动。

打开http://rdpecore1:8081检查Flink组件是否正常运行。Web UI中应该会显示只有一个可用的TaskManager实例。

1、Flink快速入门(Quickstart)

还可以通过检查log目录中的日志文件来验证系统是否正在运行:

[aaa@qq.com flink]$ tail log/flink-hadoop-standalonesession-2-rdpecore1.log
2018-07-24 14:20:23,017 INFO  org.apache.flink.runtime.resourcemanager.StandaloneResourceManager  - ResourceManager akka.tcp://aaa@qq.com:6123/user/resourcemanager was granted leadership with fencing token 00000000000000000000000000000000
2018-07-24 14:20:23,018 INFO  org.apache.flink.runtime.resourcemanager.slotmanager.SlotManager  - Starting the SlotManager.
2018-07-24 14:20:23,052 INFO  org.apache.flink.runtime.dispatcher.StandaloneDispatcher      - Dispatcher akka.tcp://aaa@qq.com:6123/user/dispatcher was granted leadership with fencing token 00000000-0000-0000-0000-000000000000
2018-07-24 14:20:23,052 INFO  org.apache.flink.runtime.dispatcher.StandaloneDispatcher      - Recovering all persisted jobs.
2018-07-24 14:20:26,849 INFO  org.apache.flink.runtime.resourcemanager.slotmanager.SlotManager  - Registering TaskManager 3df9cee680a5c6053d28d2cabd17a9cf under 8453da1201b81a610c18ac23f6cef4c0 at the SlotManager.

1.2阅读样例代码

GitHub上有样例SocketWindowWordCount的完整源代码。

(1)Scala代码:

https://github.com/apache/flink/blob/master/flink-examples/flink-examples-streaming/src/main/scala/org/apache/flink/streaming/scala/examples/socket/SocketWindowWordCount.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.streaming.scala.examples.socket

import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.time.Time

/**
 * Implements a streaming windowed version of the "WordCount" program.
 * 
 * This program connects to a server socket and reads strings from the socket.
 * The easiest way to try this out is to open a text sever (at port 12345) 
 * using the ''netcat'' tool via
 * {{{
 * nc -l 12345
 * }}}
 * and run this example with the hostname and the port as arguments..
 */
object SocketWindowWordCount {

  /** Main program method */
  def main(args: Array[String]) : Unit = {

    // the host and the port to connect to
    var hostname: String = "localhost"
    var port: Int = 0

    try {
      val params = ParameterTool.fromArgs(args)
      hostname = if (params.has("hostname")) params.get("hostname") else "localhost"
      port = params.getInt("port")
    } catch {
      case e: Exception => {
        System.err.println("No port specified. Please run 'SocketWindowWordCount " +
          "--hostname <hostname> --port <port>', where hostname (localhost by default) and port " +
          "is the address of the text server")
        System.err.println("To start a simple text server, run 'netcat -l <port>' " +
          "and type the input text into the command line")
        return
      }
    }
    
    // get the execution environment
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    
    // get input data by connecting to the socket
    val text: DataStream[String] = env.socketTextStream(hostname, port, '\n')

    // parse the data, group it, window it, and aggregate the counts 
    val windowCounts = text
          .flatMap { w => w.split("\\s") }
          .map { w => WordWithCount(w, 1) }
          .keyBy("word")
          .timeWindow(Time.seconds(5))
          .sum("count")

    // print the results with a single thread, rather than in parallel
    windowCounts.print().setParallelism(1)

    env.execute("Socket Window WordCount")
  }

  /** Data type for words with count */
  case class WordWithCount(word: String, count: Long)
}

Java代码:

https://github.com/apache/flink/blob/master/flink-examples/flink-examples-streaming/src/main/java/org/apache/flink/streaming/examples/socket/SocketWindowWordCount.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.streaming.examples.socket;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;

/**
 * Implements a streaming windowed version of the "WordCount" program.
 *
 * <p>This program connects to a server socket and reads strings from the socket.
 * The easiest way to try this out is to open a text server (at port 12345)
 * using the <i>netcat</i> tool via
 * <pre>
 * nc -l 12345
 * </pre>
 * and run this example with the hostname and the port as arguments.
 */
@SuppressWarnings("serial")
public class SocketWindowWordCount {

	public static void main(String[] args) throws Exception {

		// the host and the port to connect to
		final String hostname;
		final int port;
		try {
			final ParameterTool params = ParameterTool.fromArgs(args);
			hostname = params.has("hostname") ? params.get("hostname") : "localhost";
			port = params.getInt("port");
		} catch (Exception e) {
			System.err.println("No port specified. Please run 'SocketWindowWordCount " +
				"--hostname <hostname> --port <port>', where hostname (localhost by default) " +
				"and port is the address of the text server");
			System.err.println("To start a simple text server, run 'netcat -l <port>' and " +
				"type the input text into the command line");
			return;
		}

		// get the execution environment
		final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

		// get input data by connecting to the socket
		DataStream<String> text = env.socketTextStream(hostname, port, "\n");

		// parse the data, group it, window it, and aggregate the counts
		DataStream<WordWithCount> windowCounts = text

				.flatMap(new FlatMapFunction<String, WordWithCount>() {
					@Override
					public void flatMap(String value, Collector<WordWithCount> out) {
						for (String word : value.split("\\s")) {
							out.collect(new WordWithCount(word, 1L));
						}
					}
				})

				.keyBy("word")
				.timeWindow(Time.seconds(5))

				.reduce(new ReduceFunction<WordWithCount>() {
					@Override
					public WordWithCount reduce(WordWithCount a, WordWithCount b) {
						return new WordWithCount(a.word, a.count + b.count);
					}
				});

		// print the results with a single thread, rather than in parallel
		windowCounts.print().setParallelism(1);

		env.execute("Socket Window WordCount");
	}

	// ------------------------------------------------------------------------

	/**
	 * Data type for words with count.
	 */
	public static class WordWithCount {

		public String word;
		public long count;

		public WordWithCount() {}

		public WordWithCount(String word, long count) {
			this.word = word;
			this.count = count;
		}

		@Override
		public String toString() {
			return word + " : " + count;
		}
	}
}

1.3运行样例

现在,我们将运行此Flink应用程序。它将从socket读取文本,并且每5秒打印一次前5秒内每个不同单词的出现次数,即处理时间的翻滚窗口,只要文字在里面浮动。

(1)首先,我们使用netcat来启动本地服务器。

[aaa@qq.com flink]$ nc -l 9001

启动后,终端会一直处于等待状态。

(2)再打开一个新的终端,在其中提交Flink程序。

[aaa@qq.com flink]$ ./bin/flink run examples/streaming/SocketWindowWordCount.jar --port 9001
Starting execution of program
Program execution finished
Job with JobID c7b4f7bd16b96ae718bf658c8b129848 has finished.
Job Runtime: 386160 ms

(3)程序连接了socket并等待输入。可以在Web UI中检查Job是否正常运行。

1、Flink快速入门(Quickstart)

1、Flink快速入门(Quickstart)

(4)输入数据。

单词在5秒的时间窗口(处理时间,滚动窗口)中被计算,并被打印到stdout。监控TaskManage的输出文件,并在nc中写入一些文本(输入的文本在点击后按行发送到Flink)。

[aaa@qq.com flink]$ nc -l 9001
hello world
flink

(5)在.out文件中查看处理结果。

[aaa@qq.com flink]$ tail -f log/flink-hadoop-taskexecutor-2-rdpecore1.out
hello : 1
world : 1
flink : 1

(6)停止Flink。

[aaa@qq.com flink]$ ./bin/stop-cluster.sh

 

相关标签: Flink快速入门