欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

用Tensorflow基于Deep Q Learning DQN 玩Flappy Bird

程序员文章站 2022-04-11 07:57:02
...

前言

2013年DeepMind 在NIPS上发表Playing Atari with Deep Reinforcement Learning 一文,提出了DQN(Deep Q Network)算法,实现端到端学习玩Atari游戏,即只有像素输入,看着屏幕玩游戏。Deep Mind就凭借这个应用以6亿美元被Google收购。由于DQN的开源,在github上涌现了大量各种版本的DQN程序。但大多是复现Atari的游戏,代码量很大,也不好理解。

Flappy Bird是个极其简单又困难的游戏,风靡一时。在很早之前,就有人使用Q-Learning 算法来实现完Flappy Bird。http://sarvagyavaish.github.io/FlappyBirdRL/
但是这个的实现是通过获取小鸟的具体位置信息来实现的。

能否使用DQN来实现通过屏幕学习玩Flappy Bird是一个有意思的挑战。(话说本人和朋友在去年年底也考虑了这个idea,但当时由于不知道如何截取游戏屏幕只能使用具体位置来学习,不过其实也成功了)

最近,github上有人放出使用DQN玩Flappy Bird的代码,https://github.com/yenchenlin1994/DeepLearningFlappyBird【1】
该repo通过结合之前的repo成功实现了这个想法。这个repo对整个实现过程进行了较详细的分析,但是由于其DQN算法的代码基本采用别人的repo,代码较为混乱,不易理解。
用Tensorflow基于Deep Q Learning DQN 玩Flappy Bird
为此,本人改写了一个版本https://github.com/songrotek/DRL-FlappyBird

对DQN代码进行了重新改写。本质上对其做了类的封装,从而使代码更具通用性。可以方便移植到其他应用。

当然,本文的目的是借Flappy Bird DQN这个代码来详细分析一下DQN算法极其使用。

DQN 伪代码

这个是NIPS13版本的伪代码

class BrainDQN:
    def __init__(self):
        # init replay memory
        self.replayMemory = deque()
        # init Q network
        self.createQNetwork()
    def createQNetwork(self):
 
    def trainQNetwork(self):
 
    def setPerception(self,nextObservation,action,reward,terminal):
    def getAction(self):
    def setInitState(self,observation):

 

基本的分析详见Paper Reading 1 - Playing Atari with Deep Reinforcement Learning
基础知识详见Deep Reinforcement Learning 基础知识(DQN方面)

本文主要从代码实现的角度来分析如何编写Flappy Bird DQN的代码

编写FlappyBirdDQN.py

首先,FlappyBird的游戏已经编写好,是现成的。提供了很简单的接口:

nextObservation,reward,terminal = game.frame_step(action)
  • 1

即输入动作,输出执行完动作的屏幕截图,得到的反馈reward,以及游戏是否结束。

那么,现在先把DQN想象为一个大脑,这里我们也用BrainDQN类来表示,这个类只需获取感知信息也就是上面说的观察(截图),反馈以及是否结束,然后输出动作即可。

完美的代码封装应该是这样。具体DQN里面如何存储。如何训练是外部不关心的。
因此,我们的FlappyBirdDQN代码只有如下这么短:

# -------------------------
# Project: Deep Q-Learning on Flappy Bird
# Author: Flood Sung
# Date: 2016.3.21
# -------------------------
 
import cv2
import sys
sys.path.append("game/")
import wrapped_flappy_bird as game
from BrainDQN import BrainDQN
import numpy as np
 
# preprocess raw image to 80*80 gray image
def preprocess(observation):
    observation = cv2.cvtColor(cv2.resize(observation, (80, 80)), cv2.COLOR_BGR2GRAY)
    ret, observation = cv2.threshold(observation,1,255,cv2.THRESH_BINARY)
    return np.reshape(observation,(80,80,1))
 
def playFlappyBird():
    # Step 1: init BrainDQN
    brain = BrainDQN()
    # Step 2: init Flappy Bird Game
    flappyBird = game.GameState()
    # Step 3: play game
    # Step 3.1: obtain init state
    action0 = np.array([1,0])  # do nothing
    observation0, reward0, terminal = flappyBird.frame_step(action0)
    observation0 = cv2.cvtColor(cv2.resize(observation0, (80, 80)), cv2.COLOR_BGR2GRAY)
    ret, observation0 = cv2.threshold(observation0,1,255,cv2.THRESH_BINARY)
    brain.setInitState(observation0)
 
    # Step 3.2: run the game
    while 1!= 0:
        action = brain.getAction()
        nextObservation,reward,terminal = flappyBird.frame_step(action)
        nextObservation = preprocess(nextObservation)
        brain.setPerception(nextObservation,action,reward,terminal)
 
def main():
    playFlappyBird()
 
if __name__ == '__main__':
    main()

 

 

核心部分就在while循环里面,由于要讲图像转换为80x80的灰度图,因此,加了一个preprocess预处理函数。

这里,显然只有有游戏引擎,换一个游戏是一样的写法,非常方便。

接下来就是编写BrainDQN.py 我们的游戏大脑

编写BrainDQN

基本架构:

class BrainDQN:
    def __init__(self):
        # init replay memory
        self.replayMemory = deque()
        # init Q network
        self.createQNetwork()
    def createQNetwork(self):
 
    def trainQNetwork(self):
 
    def setPerception(self,nextObservation,action,reward,terminal):
    def getAction(self):
    def setInitState(self,observation):

基本的架构也就只需要上面这几个函数,其他的都是多余了,接下来就是编写每一部分的代码。

CNN代码

也就是createQNetwork部分,这里采用如下图的结构(转自【1】):
用Tensorflow基于Deep Q Learning DQN 玩Flappy Bird

这里就不讲解整个流程了。主要是针对具体的输入类型和输出设计卷积和全连接层。

代码如下:

    def createQNetwork(self):
        # network weights
        W_conv1 = self.weight_variable([8,8,4,32])
        b_conv1 = self.bias_variable([32])
 
        W_conv2 = self.weight_variable([4,4,32,64])
        b_conv2 = self.bias_variable([64])
 
        W_conv3 = self.weight_variable([3,3,64,64])
        b_conv3 = self.bias_variable([64])
 
        W_fc1 = self.weight_variable([1600,512])
        b_fc1 = self.bias_variable([512])
 
        W_fc2 = self.weight_variable([512,self.ACTION])
        b_fc2 = self.bias_variable([self.ACTION])
 
        # input layer
 
        self.stateInput = tf.placeholder("float",[None,80,80,4])
 
        # hidden layers
        h_conv1 = tf.nn.relu(self.conv2d(self.stateInput,W_conv1,4) + b_conv1)
        h_pool1 = self.max_pool_2x2(h_conv1)
 
        h_conv2 = tf.nn.relu(self.conv2d(h_pool1,W_conv2,2) + b_conv2)
 
        h_conv3 = tf.nn.relu(self.conv2d(h_conv2,W_conv3,1) + b_conv3)
 
        h_conv3_flat = tf.reshape(h_conv3,[-1,1600])
        h_fc1 = tf.nn.relu(tf.matmul(h_conv3_flat,W_fc1) + b_fc1)
 
        # Q Value layer
        self.QValue = tf.matmul(h_fc1,W_fc2) + b_fc2
 
        self.actionInput = tf.placeholder("float",[None,self.ACTION])
        self.yInput = tf.placeholder("float", [None])
        Q_action = tf.reduce_sum(tf.mul(self.QValue, self.actionInput), reduction_indices = 1)
        self.cost = tf.reduce_mean(tf.square(self.yInput - Q_action))
        self.trainStep = tf.train.AdamOptimizer(1e-6).minimize(self.cost)

记住输出是Q值,关键要计算出cost,里面关键是计算Q_action的值,即该state和action下的Q值。由于actionInput是one hot vector的形式,因此tf.mul(self.QValue, self.actionInput)正好就是该action下的Q值。

training 部分。

这部分是代码的关键部分,主要是要计算y值,也就是target Q值。   

def trainQNetwork(self):
        # Step 1: obtain random minibatch from replay memory
        minibatch = random.sample(self.replayMemory,self.BATCH_SIZE)
        state_batch = [data[0] for data in minibatch]
        action_batch = [data[1] for data in minibatch]
        reward_batch = [data[2] for data in minibatch]
        nextState_batch = [data[3] for data in minibatch]
 
        # Step 2: calculate y
        y_batch = []
        QValue_batch = self.QValue.eval(feed_dict={self.stateInput:nextState_batch})
        for i in range(0,self.BATCH_SIZE):
            terminal = minibatch[i][4]
            if terminal:
                y_batch.append(reward_batch[i])
            else:
                y_batch.append(reward_batch[i] + GAMMA * np.max(QValue_batch[i]))
 
        self.trainStep.run(feed_dict={
            self.yInput : y_batch,
            self.actionInput : action_batch,
            self.stateInput : state_batch
            })

其他部分

其他部分就比较容易了,这里直接贴出完整的代码:

  1. # -----------------------------
    # File: Deep Q-Learning Algorithm
    # Author: Flood Sung
    # Date: 2016.3.21
    # -----------------------------
     
    import tensorflow as tf
    import numpy as np
    import random
    from collections import deque
     
    class BrainDQN:
     
        # Hyper Parameters:
        ACTION = 2
        FRAME_PER_ACTION = 1
        GAMMA = 0.99 # decay rate of past observations
        OBSERVE = 100000. # timesteps to observe before training
        EXPLORE = 150000. # frames over which to anneal epsilon
        FINAL_EPSILON = 0.0 # final value of epsilon
        INITIAL_EPSILON = 0.0 # starting value of epsilon
        REPLAY_MEMORY = 50000 # number of previous transitions to remember
        BATCH_SIZE = 32 # size of minibatch
     
        def __init__(self):
            # init replay memory
            self.replayMemory = deque()
            # init Q network
            self.createQNetwork()
            # init some parameters
            self.timeStep = 0
            self.epsilon = self.INITIAL_EPSILON
     
        def createQNetwork(self):
            # network weights
            W_conv1 = self.weight_variable([8,8,4,32])
            b_conv1 = self.bias_variable([32])
     
            W_conv2 = self.weight_variable([4,4,32,64])
            b_conv2 = self.bias_variable([64])
     
            W_conv3 = self.weight_variable([3,3,64,64])
            b_conv3 = self.bias_variable([64])
     
            W_fc1 = self.weight_variable([1600,512])
            b_fc1 = self.bias_variable([512])
     
            W_fc2 = self.weight_variable([512,self.ACTION])
            b_fc2 = self.bias_variable([self.ACTION])
     
            # input layer
     
            self.stateInput = tf.placeholder("float",[None,80,80,4])
     
            # hidden layers
            h_conv1 = tf.nn.relu(self.conv2d(self.stateInput,W_conv1,4) + b_conv1)
            h_pool1 = self.max_pool_2x2(h_conv1)
     
            h_conv2 = tf.nn.relu(self.conv2d(h_pool1,W_conv2,2) + b_conv2)
     
            h_conv3 = tf.nn.relu(self.conv2d(h_conv2,W_conv3,1) + b_conv3)
     
            h_conv3_flat = tf.reshape(h_conv3,[-1,1600])
            h_fc1 = tf.nn.relu(tf.matmul(h_conv3_flat,W_fc1) + b_fc1)
     
            # Q Value layer
            self.QValue = tf.matmul(h_fc1,W_fc2) + b_fc2
     
            self.actionInput = tf.placeholder("float",[None,self.ACTION])
            self.yInput = tf.placeholder("float", [None])
            Q_action = tf.reduce_sum(tf.mul(self.QValue, self.actionInput), reduction_indices = 1)
            self.cost = tf.reduce_mean(tf.square(self.yInput - Q_action))
            self.trainStep = tf.train.AdamOptimizer(1e-6).minimize(self.cost)
     
            # saving and loading networks
            saver = tf.train.Saver()
            self.session = tf.InteractiveSession()
            self.session.run(tf.initialize_all_variables())
            checkpoint = tf.train.get_checkpoint_state("saved_networks")
            if checkpoint and checkpoint.model_checkpoint_path:
                    saver.restore(self.session, checkpoint.model_checkpoint_path)
                    print "Successfully loaded:", checkpoint.model_checkpoint_path
            else:
                    print "Could not find old network weights"
     
        def trainQNetwork(self):
            # Step 1: obtain random minibatch from replay memory
            minibatch = random.sample(self.replayMemory,self.BATCH_SIZE)
            state_batch = [data[0] for data in minibatch]
            action_batch = [data[1] for data in minibatch]
            reward_batch = [data[2] for data in minibatch]
            nextState_batch = [data[3] for data in minibatch]
     
            # Step 2: calculate y
            y_batch = []
            QValue_batch = self.QValue.eval(feed_dict={self.stateInput:nextState_batch})
            for i in range(0,self.BATCH_SIZE):
                terminal = minibatch[i][4]
                if terminal:
                    y_batch.append(reward_batch[i])
                else:
                    y_batch.append(reward_batch[i] + GAMMA * np.max(QValue_batch[i]))
     
            self.trainStep.run(feed_dict={
                self.yInput : y_batch,
                self.actionInput : action_batch,
                self.stateInput : state_batch
                })
     
            # save network every 100000 iteration
            if self.timeStep % 10000 == 0:
                saver.save(self.session, 'saved_networks/' + 'network' + '-dqn', global_step = self.timeStep)
     
     
        def setPerception(self,nextObservation,action,reward,terminal):
            newState = np.append(nextObservation,self.currentState[:,:,1:],axis = 2)
            self.replayMemory.append((self.currentState,action,reward,newState,terminal))
            if len(self.replayMemory) > self.REPLAY_MEMORY:
                self.replayMemory.popleft()
            if self.timeStep > self.OBSERVE:
                # Train the network
                self.trainQNetwork()
     
            self.currentState = newState
            self.timeStep += 1
     
        def getAction(self):
            QValue = self.QValue.eval(feed_dict= {self.stateInput:[self.currentState]})[0]
            action = np.zeros(self.ACTION)
            action_index = 0
            if self.timeStep % self.FRAME_PER_ACTION == 0:
                if random.random() <= self.epsilon:
                    action_index = random.randrange(self.ACTION)
                    action[action_index] = 1
                else:
                    action_index = np.argmax(QValue)
                    action[action_index] = 1
            else:
                action[0] = 1 # do nothing
     
            # change episilon
            if self.epsilon > self.FINAL_EPSILON and self.timeStep > self.OBSERVE:
                self.epsilon -= (self.INITIAL_EPSILON - self.FINAL_EPSILON)/self.EXPLORE
     
            return action
     
        def setInitState(self,observation):
            self.currentState = np.stack((observation, observation, observation, observation), axis = 2)
     
        def weight_variable(self,shape):
            initial = tf.truncated_normal(shape, stddev = 0.01)
            return tf.Variable(initial)
     
        def bias_variable(self,shape):
            initial = tf.constant(0.01, shape = shape)
            return tf.Variable(initial)
     
        def conv2d(self,x, W, stride):
            return tf.nn.conv2d(x, W, strides = [1, stride, stride, 1], padding = "SAME")
     
        def max_pool_2x2(self,x):
            return tf.nn.max_pool(x, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = "SAME")
     

一共也只有160代码。
如果这个任务不使用深度学习,而是人工的从图像中找到小鸟,然后计算小鸟的轨迹,然后计算出应该怎么按键,那么代码没有好几千行是不可能的。深度学习大大减少了代码工作。

小结

本文从代码角度对于DQN做了一定的分析,对于DQN的应用,大家可以在此基础上做各种尝试。

详解

程序员带你一步步分析AI如何玩Flappy Bird:http://www.cocoachina.com/programmer/20170413/19052.html

相关标签: DQN实现