欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

python5:函数式编程

程序员文章站 2022-04-09 21:43:32
...

函数式编程:把函数作为参数传入,这样的函数称为高阶函数,函数式编程就是指这种高度抽象的编程范式。

def add(x, y, f): 
  return f(x) + f(y)
print(add(-5, 6, abs))
11

map/reduce

  • map()函数接收两个参数,一个是函数,一个是Iterablemap将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。
    举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()
    实现如下:
>>> def f(x):
...  return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]
#map()传入的第一个参数是f,即函数对象本身。由于结果r是一个Iterator,Iterator是惰性序列,因此通过list()函数让它把整个序列都计算出来并返回一个list。
  • reduce把一个函数作用在一个序列[x1, x2, x3, ...]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)

比方说对一个序列求和,就可以用reduce实现:

>>> from functools import reduce
>>> def add(x, y):
...    return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25

利用map和reduce写一个str转换为int的函数:

>>> from functools import reduce
>>> def fn(x, y):
...    return x * 10 + y
...
>>> def char2num(s):
...        return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s]
...
>>> reduce(fn, map(char2num, '13579'))
13579

用lambda函数(匿名函数)进一步简化成:

from functools import reduce
def char2num(s): 
    return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s]
def str2int(s): 
    return reduce(lambda x, y: x * 10 + y, map(char2num, s))
  • 利用map()函数,把用户输入的不规范的英文名字,变为首字母大写,其他小写的规范名字。输入:['adam', 'LISA', 'barT'],输出:['Adam', 'Lisa', 'Bart']:
L = ['adam', 'LISA', 'barT','AAAAAA']
def normalize(name):
    return name[0].upper{} + name[1:].lower()
print(list (normalize(L)))
输出结果:['Adam', 'Lisa', 'Bart']
  • 利用map和reduce编写一个str2float函数,把字符串'123.456'转换成浮点数123.456:
def str2Int(s):
    return {'0' : 0, '1' : 1, '2' : 2, '3' : 3, '4' : 4, '5' : 5, '6' : 6, '7' : 7, '8' : 8, '9' : 9}[s]
def str2float(name):
    if name.find(".") == -1:
        return reduce(lambda x, y: x * 10 + y, map(str2Int, name))
    else:
        n = name.index('.')
        s = name[:n] + name[n + 1:]
        return reduce(lambda x, y: x * 10 + y, map(str2Int, s)) / (10 ** (len(name) - (n + 1)))
print(str2float('12332.1'))
#输出结果:12332.1

filter()函数用于过滤序列。

map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

例如,在一个list中,删掉偶数,只保留奇数,可以这么写:

def is_odd(n):
  return n % 2 == 1
filter(is_odd, [1,2,3,4,5,6,7,8,9])
# 结果: [1, 5, 9, 15]

回数是指从左向右读和从右向左读都是一样的数,例如12321,909。请利用filter()滤掉非回数:

def is_palindrome(n):
   m = str(n)
   if m == m[::-1]:
       return n
output = filter(is_palindrome, range(0,90))print(list(output))
    

sorted排序算法

Python内置的sorted()函数就可以对list进行排序:

>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]

此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:

>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]

现在,我们提出排序应该忽略大小写,按照字母序排序。要实现这个算法,不必对现有代码大加改动,只要我们能用一个key函数把字符串映射为忽略大小写排序即可。忽略大小写来比较两个字符串,实际上就是先把字符串都变成大写(或者都变成小写),再比较。

>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower)
['about', 'bob', 'Credit', 'Zoo']

要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True

>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
['Zoo', 'Credit', 'bob', 'about']

假设我们用一组tuple表示学生名字和成绩:L = [('Bob', 75), ('Adam', 92), ('Bart', 66), ('Lisa', 88)],请用sorted()对上述列表分别按名字排序:

def by_name(t):
    return t[0]
L = [('Bob', 75), ('Adam', 92), ('Bart', 66),('Lisa',88)]
print(sorted(L,key = by_name))
#[('Adam', 92), ('Bart', 66), ('Bob', 75), ('Lisa', 88)]
def by_score(t):
    return t[1]
L = [('Bob', 75), ('Adam', 92), ('Bart', 66),('Lisa',88)]
print(sorted(L,key = by_score))
#[('Bart', 66), ('Bob', 75), ('Lisa', 88), ('Adam', 92)]

返回函数

函数作为返回值高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。

我们来实现一个可变参数的求和。通常情况下,求和的函数是这样定义的:

def calc_sum(*args):
   ax = 0
     for n in args:
      ax = ax + n
     return ax

但是,如果不需要立刻求和,而是在后面的代码中,根据需要再计算怎么办?可以不返回求和的结果,而是返回求和的函数:

def lazy_sum(*args):
   def sum():
       ax = 0 for n in args:
           ax = ax + n
       return ax
   return sum

当我们调用lazy_sum()时,返回的并不是求和结果,而是求和函数:

>>> f = lazy_sum(1, 3, 5, 7, 9)
>>> f<function lazy_sum.<locals>.sum at 0x101c6ed90>

调用函数f时,才真正计算求和的结果:

>>> f()
25

匿名函数:lambda

>>> list(map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
[1, 4, 9, 16, 25, 36, 49, 64, 81]

lambda :x+ylambda x,y:x+ylambda x=x,y=y:x+y 他们三者的区别是啥啊?

#lambda :x+y匿名函数内部没有参数:
def build(x, y):
    return lambda: x * x + y * y
print(build(2,4)())
#20
#等价于:
def fn(x,y):
    def lam():
        return  x * x + y * y
    return lam
print(fn(2,4)())
#20
#lambda x,y:x+y参数传入匿名函数内部
>>> list(map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
[1, 4, 9, 16, 25, 36, 49, 64, 81]
#类似于:
def f(x):
   return x * x

lambda x=x,y=y:x+y这里需要看官方文档是怎么讲的:

>>> squares = []
>>> for x in range(5):
...  squares.append(lambda n=x: n**2)

Here, n=x creates a new variable n local to the lambda and computed when the lambda is defined so that it has the same value that x had at that point in the loop. This means that the value of n will be 0 in the first lambda, 1 in the second, 2 in the third, and so on. Therefore each lambda will now return the correct result:
(大体的意思是说,执行的时候会创建一个本地的n,n的值和x的值相等)
官方文档出处

>>> squares[2]()
4
>>> squares[4]()
16

装饰器

>>> def now():
...  print('2015-3-25')
...
>>> f = now
>>> f()
2015-3-25

函数对象有一个name属性,可以拿到函数的名字:

>>> now.__name__
'now'
>>> f.__name__
'now'

现在,假设我们要增强now()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。

本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:

import functools
def log(func):
  @functools.wraps(func)
   def wrapper(*args, **kw):#args和kw是func的参数
     print('call %s():' % func.__name__)
     return func(*args, **kw)
   return wrapper

观察上面的log,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:

@log
def now():
 print('2015-3-25')

调用now()函数,不仅会运行now()函数本身,还会在运行now()函数前打印一行日志:

>>> now()
call now():
2015-3-25

如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:

import functools
def log(text):
   def decorator(func):
     @functools.wraps(func)
     def wrapper(*args, **kw):
       print('%s %s():' % (text, func.__name__))
       return func(*args, **kw)
     return wrapper
   return decorator

偏函数

当函数的参数个数太多,需要简化时,使用functools.partial
可以创建一个新的函数,这个新函数可以固定住原函数的部分参数,从而在调用时更简单。

在介绍函数参数的时候,我们讲到,通过设定参数的默认值,可以降低函数调用的难度。而偏函数也可以做到这一点。举例如下:

int()函数可以把字符串转换为整数,当仅传入字符串时,int()函数默认按十进制转换:

>>> int('12345')
12345

但int()函数还提供额外的base参数,默认值为10。如果传入base
参数,就可以做N进制的转换:

>>> int('12345', base=8)
5349
>>> int('12345', 16)
74565

假设要转换大量的二进制字符串,每次都传入int(x, base=2)非常麻烦,于是,我们想到,可以定义一个int2()的函数,默认把base=2
传进去:

def int2(x, base=2):
   return int(x, base)

这样,我们转换二进制就非常方便了:

>>> int2('1000000')
64
>>> int2('1010101')
85

functools.partial就是帮助我们创建一个偏函数的,不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2:

>>> import functools
>>> int2 = functools.partial(int, base=2)
>>> int2('1000000')
64
>>> int2('1010101')
85

所以,简单总结functools.partial的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。
创建偏函数时,实际上可以接收函数对象、args和*kw这3个参数,当传入:

int2 = functools.partial(int, base=2)

实际上固定了int()函数的关键字参数base,也就是:

int2('10010')

相当于:

kw = { 'base': 2 }
int('10010', **kw)

当传入:

max2 = functools.partial(max, 10)

实际上会把10作为*args的一部分自动加到左边,也就是:

max2(5, 6, 7)

相当于:

args = (10, 5, 6, 7)
max(*args)

结果为10。