MySQL的必须了解的知识
本文来源于微信公众号 :程序员闪充宝,科技缪缪
首先谈一下规范MySQL的必要性
-
规范背景与目的
MySQL数据库与 Oracle、 SQL Server 等数据库相比,有其内核上的优势与劣势。我们在使用MySQL数据库的时候需要遵循一定规范,扬长避短。本规范旨在帮助或指导RD、QA、OP等技术人员做出适合线上业务的数据库设计。在数据库变更和处理流程、数据库表设计、SQL编写等方面予以规范,从而为公司业务系统稳定、健康地运行提供保障。 -
设计规范
2.1 数据库设计
以下所有规范会按照【高危】、【强制】、【建议】三个级别进行标注,遵守优先级从高到低。
对于不满足【高危】和【强制】两个级别的设计,DBA会强制打回要求修改。
2.1.1 库名
【强制】库的名称必须控制在32个字符以内,相关模块的表名与表名之间尽量提现join的关系,如user表和user_login表。
【强制】库的名称格式:业务系统名称_子系统名,同一模块使用的表名尽量使用统一前缀。
【强制】一般分库名称命名格式是库通配名_编号,编号从0开始递增,比如wenda_001以时间进行分库的名称格式是“库通配名_时间”
【强制】创建数据库时必须显式指定字符集,并且字符集只能是utf8或者utf8mb4。创建数据库SQL举例:create database db1 default character set utf8;。
2.1.2 表结构
【强制】表和列的名称必须控制在32个字符以内,表名只能使用字母、数字和下划线,一律小写。
【强制】表名要求模块名强相关,如师资系统采用”sz”作为前缀,渠道系统采用”qd”作为前缀等。
【强制】创建表时必须显式指定字符集为utf8或utf8mb4。
【强制】创建表时必须显式指定表存储引擎类型,如无特殊需求,一律为InnoDB。当需要使用除InnoDB/MyISAM/Memory以外的存储引擎时,必须通过DBA审核才能在生产环境中使用。因为Innodb表支持事务、行锁、宕机恢复、MVCC等关系型数据库重要特性,为业界使用最多的MySQL存储引擎。而这是其他大多数存储引擎不具备的,因此首推InnoDB。
【强制】建表必须有comment
【建议】建表时关于主键:(1)强制要求主键为id,类型为int或bigint,且为auto_increment(2)标识表里每一行主体的字段不要设为主键,建议设为其他字段如user_id,order_id等,并建立unique key索引(可参考cdb.teacher表设计)。因为如果设为主键且主键值为随机插入,则会导致innodb内部page分裂和大量随机I/O,性能下降。
【建议】核心表(如用户表,金钱相关的表)必须有行数据的创建时间字段create_time和最后更新时间字段update_time,便于查问题。
【建议】表中所有字段必须都是NOT NULL属性,业务可以根据需要定义DEFAULT值。因为使用NULL值会存在每一行都会占用额外存储空间、数据迁移容易出错、聚合函数计算结果偏差等问题。
【建议】建议对表里的blob、text等大字段,垂直拆分到其他表里,仅在需要读这些对象的时候才去select。
【建议】反范式设计:把经常需要join查询的字段,在其他表里冗余一份。如user_name属性在user_account,user_login_log等表里冗余一份,减少join查询。
【强制】中间表用于保留中间结果集,名称必须以tmp_开头。备份表用于备份或抓取源表快照,名称必须以bak_开头。中间表和备份表定期清理。
【强制】对于超过100W行的大表进行alter table,必须经过DBA审核,并在业务低峰期执行。因为alter table会产生表锁,期间阻塞对于该表的所有写入,对于业务可能会产生极大影响。
2.1.3 列数据类型优化
【建议】表中的自增列(auto_increment属性),推荐使用bigint类型。因为无符号int存储范围为-2147483648~2147483647(大约21亿左右),溢出后会导致报错。
【建议】业务中选择性很少的状态status、类型type等字段推荐使用tinytint或者smallint类型节省存储空间。
【建议】业务中IP地址字段推荐使用int类型,不推荐用char(15)。因为int只占4字节,可以用如下函数相互转换,而char(15)占用至少15字节。一旦表数据行数到了1亿,那么要多用1.1G存储空间。SQL:select inet_aton(‘192.168.2.12’); select inet_ntoa(3232236044); PHP: ip2long(‘192.168.2.12’); long2ip(3530427185);
【建议】不推荐使用enum,set。因为它们浪费空间,且枚举值写死了,变更不方便。推荐使用tinyint或smallint。
【建议】不推荐使用blob,text等类型。它们都比较浪费硬盘和内存空间。在加载表数据时,会读取大字段到内存里从而浪费内存空间,影响系统性能。建议和PM、RD沟通,是否真的需要这么大字段。Innodb中当一行记录超过8098字节时,会将该记录中选取最长的一个字段将其768字节放在原始page里,该字段余下内容放在overflow-page里。不幸的是在compact行格式下,原始page和overflow-page都会加载。
【建议】存储金钱的字段,建议用int,程序端乘以100和除以100进行存取。因为int占用4字节,而double占用8字节,空间浪费。
【建议】文本数据尽量用varchar存储。因为varchar是变长存储,比char更省空间。MySQL server层规定一行所有文本最多存65535字节,因此在utf8字符集下最多存21844个字符,超过会自动转换为mediumtext字段。而text在utf8字符集下最多存21844个字符,mediumtext最多存224/3个字符,longtext最多存232个字符。一般建议用varchar类型,字符数不要超过2700。
【建议】时间类型尽量选取timestamp。因为datetime占用8字节,timestamp仅占用4字节,但是范围为1970-01-01 00:00:01到2038-01-01 00:00:00。更为高阶的方法,选用int来存储时间,使用SQL函数unix_timestamp()和from_unixtime()来进行转换。
2.1.4 索引设计
【强制】InnoDB表必须主键为id int/bigint auto_increment,且主键值禁止被更新。
【建议】主键的名称以“pk_”开头,唯一键以“uk_”或“uq_”开头,普通索引以“idx_”开头,一律使用小写格式,以表名/字段的名称或缩写作为后缀。
【强制】InnoDB和MyISAM存储引擎表,索引类型必须为BTREE;MEMORY表可以根据需要选择HASH或者BTREE类型索引。
【强制】单个索引中每个索引记录的长度不能超过64KB。
【建议】单个表上的索引个数不能超过7个。
【建议】在建立索引时,多考虑建立联合索引,并把区分度最高的字段放在最前面。如列userid的区分度可由select count(distinct userid)计算出来。
【建议】在多表join的SQL里,保证被驱动表的连接列上有索引,这样join执行效率最高。
【建议】建表或加索引时,保证表里互相不存在冗余索引。对于MySQL来说,如果表里已经存在key(a,b),则key(a)为冗余索引,需要删除。
2.1.5 分库分表、分区表
【强制】分区表的分区字段(partition-key)必须有索引,或者是组合索引的首列。
【强制】单个分区表中的分区(包括子分区)个数不能超过1024。
【强制】上线前RD或者DBA必须指定分区表的创建、清理策略。
【强制】访问分区表的SQL必须包含分区键。
【建议】单个分区文件不超过2G,总大小不超过50G。建议总分区数不超过20个。
【强制】对于分区表执行alter table操作,必须在业务低峰期执行。
【强制】采用分库策略的,库的数量不能超过1024
【强制】采用分表策略的,表的数量不能超过4096
【建议】单个分表不超过500W行,ibd文件大小不超过2G,这样才能让数据分布式变得性能更佳。
【建议】水平分表尽量用取模方式,日志、报表类数据建议采用日期进行分表。
2.1.6 字符集
【强制】数据库本身库、表、列所有字符集必须保持一致,为utf8或utf8mb4。
【强制】前端程序字符集或者环境变量中的字符集,与数据库、表的字符集必须一致,统一为utf8。
2.1.7 程序层DAO设计建议
【建议】新的代码不要用model,推荐使用手动拼SQL+绑定变量传入参数的方式。因为model虽然可以使用面向对象的方式操作db,但是其使用不当很容易造成生成的SQL非常复杂,且model层自己做的强制类型转换性能较差,最终导致数据库性能下降。
【建议】前端程序连接MySQL或者redis,必须要有连接超时和失败重连机制,且失败重试必须有间隔时间。
【建议】前端程序报错里尽量能够提示MySQL或redis原生态的报错信息,便于排查错误。
【建议】对于有连接池的前端程序,必须根据业务需要配置初始、最小、最大连接数,超时时间以及连接回收机制,否则会耗尽数据库连接资源,造成线上事故。
【建议】对于log或history类型的表,随时间增长容易越来越大,因此上线前RD或者DBA必须建立表数据清理或归档方案。
【建议】在应用程序设计阶段,RD必须考虑并规避数据库中主从延迟对于业务的影响。尽量避免从库短时延迟(20秒以内)对业务造成影响,建议强制一致性的读开启事务走主库,或更新后过一段时间再去读从库。
【建议】多个并发业务逻辑访问同一块数据(innodb表)时,会在数据库端产生行锁甚至表锁导致并发下降,因此建议更新类SQL尽量基于主键去更新。
【建议】业务逻辑之间加锁顺序尽量保持一致,否则会导致死锁。
【建议】对于单表读写比大于10:1的数据行或单个列,可以将热点数据放在缓存里(如mecache或redis),加快访问速度,降低MySQL压力。
2.1.8 一个规范的建表语句示例
一个较为规范的建表语句为:
CREATE TABLE user (
`id` bigint(11) NOT NULL AUTO_INCREMENT,
`user_id` bigint(11) NOT NULL COMMENT ‘用户id’
`username` varchar(45) NOT NULL COMMENT '真实姓名',
`email` varchar(30) NOT NULL COMMENT ‘用户邮箱’,
`nickname` varchar(45) NOT NULL COMMENT '昵称',
`avatar` int(11) NOT NULL COMMENT '头像',
`birthday` date NOT NULL COMMENT '生日',
`sex` tinyint(4) DEFAULT '0' COMMENT '性别',
`short_introduce` varchar(150) DEFAULT NULL COMMENT '一句话介绍自己,最多50个汉字',
`user_resume` varchar(300) NOT NULL COMMENT '用户提交的简历存放地址',
`user_register_ip` int NOT NULL COMMENT ‘用户注册时的源ip’,
`create_time` timestamp NOT NULL COMMENT ‘用户记录创建的时间’,
`update_time` timestamp NOT NULL COMMENT ‘用户资料修改的时间’,
`user_review_status` tinyint NOT NULL COMMENT ‘用户资料审核状态,1为通过,2为审核中,3为未通过,4为还未提交审核’,
PRIMARY KEY (`id`),
UNIQUE KEY `idx_user_id` (`user_id`),
KEY `idx_username`(`username`),
KEY `idx_create_time`(`create_time`,`user_review_status`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='网站用户基本信息';
2.2 SQL编写
2.2.1 DML语句
【强制】SELECT语句必须指定具体字段名称,禁止写成*。因为select *会将不该读的数据也从MySQL里读出来,造成网卡压力。且表字段一旦更新,但model层没有来得及更新的话,系统会报错。
【强制】insert语句指定具体字段名称,不要写成insert into t1 values(…),道理同上。
【建议】insert into…values(XX),(XX),(XX)…。这里XX的值不要超过5000个。值过多虽然上线很很快,但会引起主从同步延迟。
【建议】SELECT语句不要使用UNION,推荐使用UNION ALL,并且UNION子句个数限制在5个以内。因为union all不需要去重,节省数据库资源,提高性能。
【建议】in值列表限制在500以内。例如select… where userid in(….500个以内…),这么做是为了减少底层扫描,减轻数据库压力从而加速查询。
【建议】事务里批量更新数据需要控制数量,进行必要的sleep,做到少量多次。
【强制】事务涉及的表必须全部是innodb表。否则一旦失败不会全部回滚,且易造成主从库同步终端。
【强制】写入和事务发往主库,只读SQL发往从库。
【强制】除静态表或小表(100行以内),DML语句必须有where条件,且使用索引查找。
【强制】生产环境禁止使用hint,如sql_no_cache,force index,ignore key,straight join等。因为hint是用来强制SQL按照某个执行计划来执行,但随着数据量变化我们无法保证自己当初的预判是正确的,因此我们要相信MySQL优化器!
【强制】where条件里等号左右字段类型必须一致,否则无法利用索引。
【建议】SELECT|UPDATE|DELETE|REPLACE要有WHERE子句,且WHERE子句的条件必需使用索引查找。
【强制】生产数据库中强烈不推荐大表上发生全表扫描,但对于100行以下的静态表可以全表扫描。查询数据量不要超过表行数的25%,否则不会利用索引。
【强制】WHERE 子句中禁止只使用全模糊的LIKE条件进行查找,必须有其他等值或范围查询条件,否则无法利用索引。
【建议】索引列不要使用函数或表达式,否则无法利用索引。如where length(name)='Admin’或where user_id+2=10023。
【建议】减少使用or语句,可将or语句优化为union,然后在各个where条件上建立索引。如where a=1 or b=2优化为where a=1… union …where b=2, key(a),key(b)。
【建议】分页查询,当limit起点较高时,可先用过滤条件进行过滤。如select a,b,c from t1 limit 10000,20;优化为: select a,b,c from t1 where id>10000 limit 20;。
2.2.2 多表连接
【强制】禁止跨db的join语句。因为这样可以减少模块间耦合,为数据库拆分奠定坚实基础。
【强制】禁止在业务的更新类SQL语句中使用join,比如update t1 join t2…。
【建议】不建议使用子查询,建议将子查询SQL拆开结合程序多次查询,或使用join来代替子查询。
【建议】线上环境,多表join不要超过3个表。
【建议】多表连接查询推荐使用别名,且SELECT列表中要用别名引用字段,数据库.表格式,如select a from db1.table1 alias1 where …。
【建议】在多表join中,尽量选取结果集较小的表作为驱动表,来join其他表。
2.2.3 事务
【建议】事务中INSERT|UPDATE|DELETE|REPLACE语句操作的行数控制在2000以内,以及WHERE子句中IN列表的传参个数控制在500以内。
【建议】批量操作数据时,需要控制事务处理间隔时间,进行必要的sleep,一般建议值5-10秒。
【建议】对于有auto_increment属性字段的表的插入操作,并发需要控制在200以内。
【强制】程序设计必须考虑“数据库事务隔离级别”带来的影响,包括脏读、不可重复读和幻读。线上建议事务隔离级别为repeatable-read。
【建议】事务里包含SQL不超过5个(支付业务除外)。因为过长的事务会导致锁数据较久,MySQL内部缓存、连接消耗过多等雪崩问题。
【建议】事务里更新语句尽量基于主键或unique key,如update … where id=XX; 否则会产生间隙锁,内部扩大锁定范围,导致系统性能下降,产生死锁。
【建议】尽量把一些典型外部调用移出事务,如调用webservice,访问文件存储等,从而避免事务过长。
【建议】对于MySQL主从延迟严格敏感的select语句,请开启事务强制访问主库。
2.2.4 排序和分组
【建议】减少使用order by,和业务沟通能不排序就不排序,或将排序放到程序端去做。order by、group by、distinct这些语句较为耗费CPU,数据库的CPU资源是极其宝贵的。
【建议】order by、group by、distinct这些SQL尽量利用索引直接检索出排序好的数据。如where a=1 order by可以利用key(a,b)。
【建议】包含了order by、group by、distinct这些查询的语句,where条件过滤出来的结果集请保持在1000行以内,否则SQL会很慢。
2.2.5 线上禁止使用的SQL语句
【高危】禁用update|delete t1 … where a=XX limit XX; 这种带limit的更新语句。因为会导致主从不一致,导致数据错乱。建议加上order by PK。
【高危】禁止使用关联子查询,如update t1 set … where name in(select name from user where…);效率极其低下。
【强制】禁用procedure、function、trigger、views、event、外键约束。因为他们消耗数据库资源,降低数据库实例可扩展性。推荐都在程序端实现。
【强制】禁用insert into …on duplicate key update…在高并发环境下,会造成主从不一致。
【强制】禁止联表更新语句,如update t1,t2 where t1.id=t2.id…。
MySQL的必知13点
-
能说下myisam 和 innodb的区别吗?
myisam引擎是5.1版本之前的默认引擎,支持全文检索、压缩、空间函数等,但是不支持事务和行级锁,所以一般用于有大量查询少量插入的场景来使用,而且myisam不支持外键,并且索引和数据是分开存储的。
innodb是基于聚簇索引建立的,和myisam相反它支持事务、外键,并且通过MVCC来支持高并发,索引和数据存储在一起。 -
说下mysql的索引有哪些吧,聚簇和非聚簇索引又是什么?
B+树是左小右大的顺序存储结构,节点只包含id索引列,而叶子节点包含索引列和数据,这种数据和索引在一起存储的索引方式叫做聚簇索引,一张表只能有一个聚簇索引。假设没有定义主键,InnoDB会选择一个唯一的非空索引代替,如果没有的话则会隐式定义一个主键作为聚簇索引。
这是主键聚簇索引存储的结构,那么非聚簇索引的结构是什么样子呢?非聚簇索引(二级索引)保存的是主键id值,这一点和myisam保存的是数据地址是不同的。
最终,我们一张图看看InnoDB和Myisam聚簇和非聚簇索引的区别 -
那你知道什么是覆盖索引和回表吗?
覆盖索引指的是在一次查询中,如果一个索引包含或者说覆盖所有需要查询的字段的值,我们就称之为覆盖索引,而不再需要回表查询。
而要确定一个查询是否是覆盖索引,我们只需要explain sql语句看Extra的结果是否是“Using index”即可。
以上面的user表来举例,我们再增加一个name字段,然后做一些查询试试。
explain select * from user where age=1; //查询的name无法从索引数据获取
explain select id,age from user where age=1; //可以直接从索引获取
- 锁的类型有哪些呢
mysql锁分为共享锁和排他锁,也叫做读锁和写锁。读锁是共享的,可以通过lock in share mode实现,这时候只能读不能写。写锁是排他的,它会阻塞其他的写锁和读锁。从颗粒度来区分,可以分为表锁和行锁两种。
表锁会锁定整张表并且阻塞其他用户对该表的所有读写操作,比如alter修改表结构的时候会锁表。行锁又可以分为乐观锁和悲观锁,悲观锁可以通过for update实现,乐观锁则通过版本号实现。. - 你能说下事务的基本特性和隔离级别吗?
事务基本特性ACID分别是:
原子性指的是一个事务中的操作要么全部成功,要么全部失败。
一致性指的是数据库总是从一个一致性的状态转换到另外一个一致性的状态。比如A转账给B100块钱,假设中间sql执行过程中系统崩溃A也不会损失100块,因为事务没有提交,修改也就不会保存到数据库。
隔离性指的是一个事务的修改在最终提交前,对其他事务是不可见的。
持久性指的是一旦事务提交,所做的修改就会永久保存到数据库中。
而隔离性有4个隔离级别,分别是:
read uncommit 读未提交,可能会读到其他事务未提交的数据,也叫做脏读。
用户本来应该读取到id=1的用户age应该是10,结果读取到了其他事务还没有提交的事务,结果读取结果age=20,这就是脏读。
read commit 读已提交,两次读取结果不一致,叫做不可重复读。
不可重复读解决了脏读的问题,他只会读取已经提交的事务。
用户开启事务读取id=1用户,查询到age=10,再次读取发现结果=20,在同一个事务里同一个查询读取到不同的结果叫做不可重复读。
repeatable read 可重复复读,这是mysql的默认级别,就是每次读取结果都一样,但是有可能产生幻读。
serializable 串行,一般是不会使用的,他会给每一行读取的数据加锁,会导致大量超时和锁竞争的问题。
- 那ACID靠什么保证的呢?
A原子性由undo log日志保证,它记录了需要回滚的日志信息,事务回滚时撤销已经执行成功的sql
C一致性一般由代码层面来保证
I隔离性由MVCC来保证
D持久性由内存+redo log来保证,mysql修改数据同时在内存和redo log记录这次操作,事务提交的时候通过redo log刷盘,宕机的时候可以从redo log恢复
- 那你说说什么是幻读,什么是MVCC?
要说幻读,首先要了解MVCC,MVCC叫做多版本并发控制,实际上就是保存了数据在某个时间节点的快照。
我们每行数实际上隐藏了两列,创建时间版本号,过期(删除)时间版本号,每开始一个新的事务,版本号都会自动递增。
还是拿上面的user表举例子,假设我们插入两条数据,他们实际上应该长这样。
由于MVCC的原理是查找创建版本小于或等于当前事务版本,删除版本为空或者大于当前事务版本,小明的真实的查询应该是这样
select * from user where id<=3 and create_version<=3 and (delete_version>3
所以小明最后查询到的id=1的名字还是’张三’,并且id=2的记录也能查询到。这样做是为了保证事务读取的数据是在事务开始前就已经存在的,要么是事务自己插入或者修改的。
明白MVCC原理,我们来说什么是幻读就简单多了。举一个常见的场景,用户注册时,我们先查询用户名是否存在,不存在就插入,假定用户名是唯一索引。
小明开启事务current_version=6查询名字为’王五’的记录,发现不存在。
小红开启事务current_version=7插入一条数据,结果是这样:
小明执行插入名字’王五’的记录,发现唯一索引冲突,无法插入,这就是幻读。
8. 那你知道什么是间隙锁吗?
间隙锁是可重复读级别下才会有的锁,结合MVCC和间隙锁可以解决幻读的问题。我们还是以user举例,假设现在user表有几条记录
当我们执行:
begin;
select * from user where age=20 for update;
begin;
insert into user(age) values(10); #成功
insert into user(age) values(11); #失败
insert into user(age) values(20); #失败
insert into user(age) values(21); #失败
insert into user(age) values(30); #失败
只有10可以插入成功,那么因为表的间隙mysql自动帮我们生成了区间(左开右闭)
(negative infinity,10],(10,20],(20,30],(30,positive infinity)
由于20存在记录,所以(10,20],(20,30]区间都被锁定了无法插入、删除。
如果查询21呢?就会根据21定位到(20,30)的区间(都是开区间)。
需要注意的是唯一索引是不会有间隙索引的。
9. 你们数据量级多大?分库分表怎么做的?
首先分库分表分为垂直和水平两个方式,一般来说我们拆分的顺序是先垂直后水平。
垂直分库
基于现在微服务拆分来说,都是已经做到了垂直分库了
垂直分表
如果表字段比较多,将不常用的、数据较大的等等做拆分
水平分表
首先根据业务场景来决定使用什么字段作为分表字段(sharding_key),比如我们现在日订单1000万,我们大部分的场景来源于C端,我们可以用user_id作为sharding_key,数据查询支持到最近3个月的订单,超过3个月的做归档处理,那么3个月的数据量就是9亿,可以分1024张表,那么每张表的数据大概就在100万左右。
比如用户id为100,那我们都经过hash(100),然后对1024取模,就可以落到对应的表上了。
10. 那分表后的ID怎么保证唯一性的呢?
因为我们主键默认都是自增的,那么分表之后的主键在不同表就肯定会有冲突了。有几个办法考虑:
设定步长,比如1-1024张表我们分别设定1-1024的基础步长,这样主键落到不同的表就不会冲突了。
分布式ID,自己实现一套分布式ID生成算法或者使用开源的比如雪花算法这种
分表后不使用主键作为查询依据,而是每张表单独新增一个字段作为唯一主键使用,比如订单表订单号是唯一的,不管最终落在哪张表都基于订单号作为查询依据,更新也一样。
11. 分表后非sharding_key的查询怎么处理呢?
可以做一个mapping表,比如这时候商家要查询订单列表怎么办呢?不带user_id查询的话你总不能扫全表吧?所以我们可以做一个映射关系表,保存商家和用户的关系,查询的时候先通过商家查询到用户列表,再通过user_id去查询。
打宽表,一般而言,商户端对数据实时性要求并不是很高,比如查询订单列表,可以把订单表同步到离线(实时)数仓,再基于数仓去做成一张宽表,再基于其他如es提供查询服务。
数据量不是很大的话,比如后台的一些查询之类的,也可以通过多线程扫表,然后再聚合结果的方式来做。或者异步的形式也是可以的。
List<Callable<List<User>>> taskList = Lists.newArrayList();
for (int shardingIndex = 0; shardingIndex < 1024; shardingIndex++) {
taskList.add(() -> (userMapper.getProcessingAccountList(shardingIndex)));
}
List<ThirdAccountInfo> list = null;
try {
list = taskExecutor.executeTask(taskList);
} catch (Exception e) {
//do something
}
public class TaskExecutor {
public <T> List<T> executeTask(Collection<? extends Callable<T>> tasks) throws Exception {
List<T> result = Lists.newArrayList();
List<Future<T>> futures = ExecutorUtil.invokeAll(tasks);
for (Future<T> future : futures) {
result.add(future.get());
}
return result;
}
}
- 说说mysql主从同步怎么做的吧?
首先先了解mysql主从同步的原理
master提交完事务后,写入binlog
slave连接到master,获取binlog
master创建dump线程,推送binglog到slave
slave启动一个IO线程读取同步过来的master的binlog,记录到relay log中继日志中
slave再开启一个sql线程读取relay log事件并在slave执行,完成同步
slave记录自己的binglog
由于mysql默认的复制方式是异步的,主库把日志发送给从库后不关心从库是否已经处理,这样会产生一个问题就是假设主库挂了,从库处理失败了,这时候从库升为主库后,日志就丢失了。由此产生两个概念。
全同步复制
主库写入binlog后强制同步日志到从库,所有的从库都执行完成后才返回给客户端,但是很显然这个方式的话性能会受到严重影响。
半同步复制
和全同步不同的是,半同步复制的逻辑是这样,从库写入日志成功后返回ACK确认给主库,主库收到至少一个从库的确认就认为写操作完成。
13. 那主从的延迟怎么解决呢?
这个问题貌似真的是个无解的问题,只能是说自己来判断了,需要走主库的强制走主库查询。
上一篇: MySQL数据库主从同步
下一篇: 『JWT』,你必须了解的认证登录方案