欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

keras图像风格迁移

程序员文章站 2022-04-09 19:42:14
...


风格迁移: 在内容上尽量与基准图像保持一致,在风格上尽量与风格图像保持一致。

  • 1. 使用预训练的VGG19网络提取特征
  • 2. 损失函数之一是“内容损失”(content loss),代表合成的图像的特征与基准图像的特征之间的L2距离,保证生成的图像内容和基准图像保持一致。
  • 3. 损失函数之二是“风格损失”(style loss),代表合成图像的特征与风格图像的特征之间的Gram矩阵之间的差异,保证生成图像的风格和风格图像保持一致。
  • 4. 损失函数之三是“差异损失”(variation loss),代表合成的图像局部特征之间的差异,保证生成的图像局部特征的一致性,整体看上去自然不突兀。

 

基于keras的代码实现:

# coding: utf-8
from __future__ import print_function
from keras.preprocessing.image import load_img, img_to_array
import numpy as np
from scipy.optimize import fmin_l_bfgs_b
import time
import argparse
from scipy.misc import imsave
from keras.applications import vgg19
from keras import backend as K
import os
from PIL import Image, ImageFont, ImageDraw, ImageOps, ImageEnhance, ImageFilter

# 输入参数
parser = argparse.ArgumentParser(description='基于Keras的图像风格迁移.')  # 解析器
parser.add_argument('--style_reference_image_path', metavar='ref', type=str,default = './style.jpg',
                    help='目标风格图片的位置')
parser.add_argument('--base_image_path', metavar='ref', type=str,default = './base.jpg',
                    help='基准图片的位置')
parser.add_argument('--iter', type=int, default=25, required=False,
                    help='迭代次数')
parser.add_argument('--pictrue_size', type=int, default=500, required=False,
                    help='图片大小.')

# 获取参数
args = parser.parse_args()
base_image_path = args.base_image_path
style_reference_image_path = args.style_reference_image_path
iterations = args.iter
pictrue_size = args.pictrue_size


source_image = Image.open(base_image_path)
source_image= source_image.resize((pictrue_size, pictrue_size))

width, height = pictrue_size, pictrue_size


def save_img(fname, image, image_enhance=True):  # 图像增强
    image = Image.fromarray(image)
    if image_enhance:
        # 亮度增强
        enh_bri = ImageEnhance.Brightness(image)
        brightness = 1.2
        image = enh_bri.enhance(brightness)

        # 色度增强
        enh_col = ImageEnhance.Color(image)
        color = 1.2
        image = enh_col.enhance(color)

        # 锐度增强
        enh_sha = ImageEnhance.Sharpness(image)
        sharpness = 1.2
        image = enh_sha.enhance(sharpness)
    imsave(fname, image)
    return


# util function to resize and format pictures into appropriate tensors
def preprocess_image(image):
    """
    预处理图片,包括变形到(1,width, height)形状,数据归一到0-1之间
    :param image: 输入一张图片
    :return: 预处理好的图片
    """
    image = image.resize((width, height))
    image = img_to_array(image)
    image = np.expand_dims(image, axis=0)  # (width, height)->(1,width, height)
    image = vgg19.preprocess_input(image)  # 0-255 -> 0-1.0
    return image

def deprocess_image(x):
    """
    将0-1之间的数据变成图片的形式返回
    :param x: 数据在0-1之间的矩阵
    :return: 图片,数据都在0-255之间
    """
    x = x.reshape((width, height, 3))
    x[:, :, 0] += 103.939
    x[:, :, 1] += 116.779
    x[:, :, 2] += 123.68
    # 'BGR'->'RGB'
    x = x[:, :, ::-1]
    x = np.clip(x, 0, 255).astype('uint8')  # 以防溢出255范围
    return x


def gram_matrix(x):  # Gram矩阵
    assert K.ndim(x) == 3
    if K.image_data_format() == 'channels_first':
        features = K.batch_flatten(x)
    else:
        features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
    gram = K.dot(features, K.transpose(features))
    return gram

# 风格损失,是风格图片与结果图片的Gram矩阵之差,并对所有元素求和
def style_loss(style, combination):
    assert K.ndim(style) == 3
    assert K.ndim(combination) == 3
    S = gram_matrix(style)
    C = gram_matrix(combination)
    S_C = S-C
    channels = 3
    size = height * width
    return K.sum(K.square(S_C)) / (4. * (channels ** 2) * (size ** 2))
    #return K.sum(K.pow(S_C,4)) / (4. * (channels ** 2) * (size ** 2))  # 居然和平方没有什么不同
    #return K.sum(K.pow(S_C,4)+K.pow(S_C,2)) / (4. * (channels ** 2) * (size ** 2))  # 也能用,花后面出现了叶子


def eval_loss_and_grads(x):  # 输入x,输出对应于x的梯度和loss
    if K.image_data_format() == 'channels_first':
        x = x.reshape((1, 3, height, width))
    else:
        x = x.reshape((1, height, width, 3))
    outs = f_outputs([x])  # 输入x,得到输出
    loss_value = outs[0]
    if len(outs[1:]) == 1:
        grad_values = outs[1].flatten().astype('float64')
    else:
        grad_values = np.array(outs[1:]).flatten().astype('float64')
    return loss_value, grad_values

# an auxiliary loss function
# designed to maintain the "content" of the
# base image in the generated image
def content_loss(base, combination):
    return K.sum(K.square(combination - base))

# the 3rd loss function, total variation loss,
# designed to keep the generated image locally coherent
def total_variation_loss(x,img_nrows=width, img_ncols=height):
    assert K.ndim(x) == 4
    if K.image_data_format() == 'channels_first':
        a = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, 1:, :img_ncols - 1])
        b = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, :img_nrows - 1, 1:])
    else:
        a = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, 1:, :img_ncols - 1, :])
        b = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, :img_nrows - 1, 1:, :])
    return K.sum(K.pow(a + b, 1.25))


# Evaluator可以只需要进行一次计算就能得到所有的梯度和loss
class Evaluator(object):
    def __init__(self):
        self.loss_value = None
        self.grads_values = None

    def loss(self, x):
        assert self.loss_value is None
        loss_value, grad_values = eval_loss_and_grads(x)
        self.loss_value = loss_value
        self.grad_values = grad_values
        return self.loss_value

    def grads(self, x):
        assert self.loss_value is not None
        grad_values = np.copy(self.grad_values)
        self.loss_value = None
        self.grad_values = None
        return grad_values


# 得到需要处理的数据,处理为keras的变量(tensor),处理为一个(3, width, height, 3)的矩阵
# 分别是基准图片,风格图片,结果图片
base_image = K.variable(preprocess_image(source_image))   # 基准图像
style_reference_image = K.variable(preprocess_image(load_img(style_reference_image_path)))
if K.image_data_format() == 'channels_first':
    combination_image = K.placeholder((1, 3, width, height))
else:
    combination_image = K.placeholder((1, width, height, 3))

# 组合以上3张图片,作为一个keras输入向量
input_tensor = K.concatenate([base_image, style_reference_image, combination_image], axis=0)   #组合

# 使用Keras提供的训练好的Vgg19网络,不带3个全连接层
model = vgg19.VGG19(input_tensor=input_tensor,weights='imagenet', include_top=False)
model.summary()  # 打印出模型概况
'''
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         (None, None, None, 3)     0
_________________________________________________________________
block1_conv1 (Conv2D)        (None, None, None, 64)    1792             A
_________________________________________________________________
block1_conv2 (Conv2D)        (None, None, None, 64)    36928
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, None, None, 64)    0
_________________________________________________________________
block2_conv1 (Conv2D)        (None, None, None, 128)   73856            B
_________________________________________________________________
block2_conv2 (Conv2D)        (None, None, None, 128)   147584
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, None, None, 128)   0
_________________________________________________________________
block3_conv1 (Conv2D)        (None, None, None, 256)   295168           C
_________________________________________________________________
block3_conv2 (Conv2D)        (None, None, None, 256)   590080
_________________________________________________________________
block3_conv3 (Conv2D)        (None, None, None, 256)   590080
_________________________________________________________________
block3_conv4 (Conv2D)        (None, None, None, 256)   590080
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, None, None, 256)   0
_________________________________________________________________
block4_conv1 (Conv2D)        (None, None, None, 512)   1180160          D
_________________________________________________________________
block4_conv2 (Conv2D)        (None, None, None, 512)   2359808
_________________________________________________________________
block4_conv3 (Conv2D)        (None, None, None, 512)   2359808
_________________________________________________________________
block4_conv4 (Conv2D)        (None, None, None, 512)   2359808
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, None, None, 512)   0
_________________________________________________________________
block5_conv1 (Conv2D)        (None, None, None, 512)   2359808          E
_________________________________________________________________
block5_conv2 (Conv2D)        (None, None, None, 512)   2359808
_________________________________________________________________
block5_conv3 (Conv2D)        (None, None, None, 512)   2359808
_________________________________________________________________
block5_conv4 (Conv2D)        (None, None, None, 512)   2359808          F
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, None, None, 512)   0
=================================================================
'''
# Vgg19网络中的不同的名字,储存起来以备使用
outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])

loss = K.variable(0.)

layer_features = outputs_dict['block5_conv2']
base_image_features = layer_features[0, :, :, :]
combination_features = layer_features[2, :, :, :]
content_weight = 0.08
loss += content_weight * content_loss(base_image_features,
                                      combination_features)

feature_layers = ['block1_conv1','block2_conv1','block3_conv1','block4_conv1','block5_conv1']
feature_layers_w = [0.1,0.1,0.4,0.3,0.1]
# feature_layers = ['block5_conv1']
# feature_layers_w = [1]
for i in range(len(feature_layers)):
    # 每一层的权重以及数据
    layer_name, w = feature_layers[i], feature_layers_w[i]
    layer_features = outputs_dict[layer_name]  # 该层的特征

    style_reference_features = layer_features[1, :, :, :]  # 参考图像在VGG网络中第i层的特征
    combination_features = layer_features[2, :, :, :]     # 结果图像在VGG网络中第i层的特征

    loss += w * style_loss(style_reference_features, combination_features)  # 目标风格图像的特征和结果图像特征之间的差异作为loss

loss += total_variation_loss(combination_image)


# 求得梯度,输入combination_image,对loss求梯度, 每轮迭代中combination_image会根据梯度方向做调整
grads = K.gradients(loss, combination_image)

outputs = [loss]
if isinstance(grads, (list, tuple)):
    outputs += grads
else:
    outputs.append(grads)

f_outputs = K.function([combination_image], outputs)

evaluator = Evaluator()
x = preprocess_image(source_image)
img = deprocess_image(x.copy())
fname = '原始图片.png'
save_img(fname, img)

# 开始迭代
for i in range(iterations):
    start_time = time.time()
    print('迭代', i,end="   ")
    x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(), fprime=evaluator.grads, maxfun=20, epsilon=1e-7)
    # 一个scipy的L-BFGS优化器
    print('目前loss:', min_val,end="  ")
    # 保存生成的图片
    img = deprocess_image(x.copy())

    fname = 'result_%d.png' % i
    end_time = time.time()
    print('耗时%.2f s' % (end_time - start_time))

    if i%5 == 0 or i == iterations-1:
        save_img(fname, img, image_enhance=True)
        print('文件保存为', fname)

基准图像:

keras图像风格迁移

风格图像:

keras图像风格迁移

 

合成的艺术风格图像:

keras图像风格迁移

 

训练时候整体的loss是3个loss的和,每个loss都有一个系数,调整不同的系数,对应不同的效果。

 

“内容损失”(content loss)

以下图片分别对应内容损失系数为0.1、1、5、10的效果:

keras图像风格迁移

keras图像风格迁移

keras图像风格迁移

keras图像风格迁移

 

随着内容损失系数的增大,迭代优化会更加侧重于调整合成图像的内容,使得图像跟原始图像越来越接近。

 

“风格损失”(style loss)

 

风格损失是VGG网络5个CNN层的特征的融合,单纯增大风格损失系数对图像最终风格影响不大,以下是系数是1和100的对比:

keras图像风格迁移

keras图像风格迁移

 

系数相差100倍,但是图像风格并没有明显的改变。可能调整5个卷积特征不同的比例系数会有效果。

以下是单纯使用第1、2、3、4、5个卷积层特征的效果:

keras图像风格迁移

keras图像风格迁移

keras图像风格迁移

keras图像风格迁移

keras图像风格迁移

 

可见 5个卷积层特征里第3和第4个卷积层对图像的风格影响较大。

以下调整第3和第4个卷积层的系数,5个系数比为1:1:1:1:1和0.5:0.5:0.4:0.4:1

keras图像风格迁移

keras图像风格迁移

增大第3、4层比例之后,图像风格更加接近风格图像。

 

 

“差异损失”(variation loss)

 

图像差异损失衡量的是图像本身的局部特征之间的差异,系数越大,图像局部越接近,表现在图像上就是图像像素间过度自然,以下是系数是1、5、10的效果:

keras图像风格迁移

keras图像风格迁移

keras图像风格迁移

 

以上。

相关标签: 风格迁移