Pytorch入门--线性回归
程序员文章站
2022-03-04 13:01:21
...
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.autograd import Variable
x_train=np.array([[3.3],[4.4],[5.5],[6.71],[6.93],[4.168],
[9.779],[6.182],[7.59],[2.167],[7.042],
[10.791],[5.313],[7.997],[3.1]],dtype=np.float32)
y_train=np.array([[1.7],[2.76],[2.09],[3.19],[1.694],[1.573],
[3.366],[2.596],[2.53],[1.221],[2.827],
[3.465],[1.65],[2.904],[1.3]],dtype=np.float32)
#将numpy.array转换成Tensor
x_train=torch.from_numpy(x_train)
y_train=torch.from_numpy(y_train)
#建立模型
class LinearRegression(nn.Module):
def __init__(self):
super(LinearRegression,self).__init__()
self.linear=nn.Linear(1,1)
def forward(self,x):
out=self.linear(x)
return out
if torch.cuda.is_available():
model=LinearRegeression().cuda()
else:
model=LinearRegression()
criterion=nn.MSELoss()
optimizer=torch.optim.SGD(model.parameters(),lr=1e-3)
#训练模型
num_epochs=1000
for epoch in range(num_epochs):
if torch.cuda.is_available():
inputs=Variable(x_train).cuda()
target=Variable(y_train).cuda()
else:
inputs=Variable(x_train)
target=Variable(y_train)
#forward
out=model(inputs)
loss=criterion(out,target)
#backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1)%20==0:
print('Epoch[{}/{}],loss:{:.6f}'.format(epoch+1,num_epochs,loss.data[0]))
#预测
model.eval() #转化为预测模式
predict=model(Variable(x_train))
predict=predict.data.numpy()
plt.plot(x_train.numpy(),y_train.numpy(),'ro',label='Original data')
plt.plot(x_train.numpy(),predict,label='Fitting Line')
plt.show()
上一篇: asp.net mvc api 异常捕捉
下一篇: JavaScript开平方怎么求