欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Pytorch入门--线性回归

程序员文章站 2022-03-04 13:01:21
...
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.autograd import Variable


x_train=np.array([[3.3],[4.4],[5.5],[6.71],[6.93],[4.168],
                 [9.779],[6.182],[7.59],[2.167],[7.042],
                  [10.791],[5.313],[7.997],[3.1]],dtype=np.float32)
y_train=np.array([[1.7],[2.76],[2.09],[3.19],[1.694],[1.573],
                 [3.366],[2.596],[2.53],[1.221],[2.827],
                  [3.465],[1.65],[2.904],[1.3]],dtype=np.float32)
#将numpy.array转换成Tensor
x_train=torch.from_numpy(x_train)
y_train=torch.from_numpy(y_train)

#建立模型
class LinearRegression(nn.Module):
    def __init__(self):
        super(LinearRegression,self).__init__()
        self.linear=nn.Linear(1,1)
        
    def forward(self,x):
        out=self.linear(x)
        return out
    
if torch.cuda.is_available():
    model=LinearRegeression().cuda()
else:
    model=LinearRegression()
    
criterion=nn.MSELoss()
optimizer=torch.optim.SGD(model.parameters(),lr=1e-3)

#训练模型
num_epochs=1000
for epoch in range(num_epochs):
    if torch.cuda.is_available():
        inputs=Variable(x_train).cuda()
        target=Variable(y_train).cuda()    
    else:
        inputs=Variable(x_train)
        target=Variable(y_train)
    #forward
    out=model(inputs)
    loss=criterion(out,target)
    #backward
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if (epoch+1)%20==0:
        print('Epoch[{}/{}],loss:{:.6f}'.format(epoch+1,num_epochs,loss.data[0]))
        
        
#预测
model.eval()   #转化为预测模式
predict=model(Variable(x_train))
predict=predict.data.numpy()
plt.plot(x_train.numpy(),y_train.numpy(),'ro',label='Original data')
plt.plot(x_train.numpy(),predict,label='Fitting Line')
plt.show()
相关标签: Pytorch