欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Java集合 - HashMap - JDK1.8

程序员文章站 2022-03-04 11:13:38
...

HashMap

HashMap是以键值对进行存储的集合,其中键值是唯一的,HashMap是无序的。

改变

1.7版本的HashMap使用的数组+链表的存储方式。

1.8版本的HashMap使用的数组+链表或者数组+红黑树的存储方式,当链表长度大于某值时,链表就会转化为红黑树。当红黑树节点数小于某值时会转化为链表。虽然存入操作变得复杂,但是提高了查询的效率。

源码分析

首先看一下重要的属性。

//数组的最小容量2的4次方   16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

//数组的最大容量2的30次方
static final int MAXIMUM_CAPACITY = 1 << 30;

//默认加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;

//当链表长度大于该值,链表转化为红黑树。  
static final int TREEIFY_THRESHOLD = 8;

//当红黑树节点小于该值,红黑树转化为链表。
static final int UNTREEIFY_THRESHOLD = 6;

//扩容的阀值,当(加载因子 * 元素个数)大于阀值就会进行resize操作进行扩容。
int threshold;

//加载因子
final float loadFactor;

构造方法

public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

//找到容量的最近二次幂的值
static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

这里有一个问题延伸,为什么数组长度一定是2的倍数?
一共有两点原因:
(1)在数组长度h是2的幂次时候h & (length - 1) 与 h % length的结果是相同的,但不是等效的,位运算要快的多。这样可以提升效率。
(2)在数组长度h是2的幂次时候,散列的更加均匀。

put方法

public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
/**
* p = tab[i = (n - 1) & hash]这里就是散列操作,也就是用上数组长度为2次幂的精髓所在,相当于对数组长度取余。
* 获取这个位置的元素。
* 同时会知道这里的位置是链表还是红黑树,后面插入会用上。
**/
        if ((p = tab[i = (n - 1) & hash]) == null)    
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))  //如果key值相同那么下面不执行,后面会用新的value覆盖点旧的value
                e = p;
            else if (p instanceof TreeNode)      //判断节点是什么类型,如果是树节点,就插入到红黑树中,不然就是链表中。
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {              
            //初始化table数组,就是一开始什么都没有的时候,初始化为默认长度16
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

get方法

public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)      //判断是链表结构还是红黑树结构
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);  //红黑树查找
                do {      //链表查找
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }