欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

天线理论与设计_第五节作业_王怀帅_202018019427053

程序员文章站 2022-04-07 18:25:19
3.3-1 对下述间距的6元等幅边射阵(θM=0(\theta_M=0(θM​=0,θ\thetaθ角从阵法向算起,写出其阵因子方向函数,求出0∘∼90∘0^\circ\sim90^\circ0∘∼90∘角域的零点方向,并概画其极坐标方向图:(1)d=λ/2;(1)d=\lambda/2;(1)d=λ/2;(1)d=λ;(1)d=\lambda;(1)d=λ;(1)d=0.8λ;(1)d=0.8\lambda;(1)d=0.8λ;由题意知:N=6N=6N=6,ψ=0\psi=0ψ=0,u=k△r+...

3.3-1 对下述间距的6元等幅边射阵 ( θ M = 0 (\theta_M=0 (θM=0 θ \theta θ角从阵法向算起),写出其阵因子方向函数,求出 0 ∘ ∼ 9 0 ∘ 0^\circ\sim90^\circ 090角域的零点方向,并概画其极坐标方向图:

( 1 ) d = λ / 2 ; (1)d=\lambda/2; (1)d=λ/2;

( 1 ) d = λ ; (1)d=\lambda; (1)d=λ;

( 1 ) d = 0.8 λ ; (1)d=0.8\lambda; (1)d=0.8λ;

由题意知:

N = 6 N=6 N=6 ψ = 0 \psi=0 ψ=0 u = k △ r + ψ = k d sin ⁡ θ u=k\bigtriangleup r+\psi=kd\sin\theta u=kr+ψ=kdsinθ

阵因子方向函数:
F a = sin ⁡ ( N π d λ sin ⁡ θ ) N sin ⁡ ( π d λ sin ⁡ θ ) = sin ⁡ ( 6 π d λ sin ⁡ θ ) 6 sin ⁡ ( π d λ sin ⁡ θ ) F_a= \frac{\sin(\frac{N\pi d}{\lambda}\sin\theta)} {N\sin(\frac{\pi d}{\lambda}\sin\theta)}= \frac{\sin(\frac{6\pi d}{\lambda}\sin\theta)} {6\sin(\frac{\pi d}{\lambda}\sin\theta)} Fa=Nsin(λπdsinθ)sin(λNπdsinθ)=6sin(λπdsinθ)sin(λ6πdsinθ)

因为单元天线采用半波阵子:

F ( θ ) = F 1 ⋅ F a = cos ⁡ ( π 2 cos ⁡ θ ) sin ⁡ θ ⋅ sin ⁡ ( 6 π d λ sin ⁡ θ ) 6 sin ⁡ ( π d λ sin ⁡ θ ) F(\theta)=F_1\cdot F_a= \frac{\cos(\frac{\pi}{2}\cos\theta)}{\sin\theta}\cdot \frac{\sin(\frac{6\pi d}{\lambda}\sin\theta)} {6\sin(\frac{\pi d}{\lambda}\sin\theta)} F(θ)=F1Fa=sinθcos(2πcosθ)6sin(λπdsinθ)sin(λ6πdsinθ)

零点方向:
θ 0 = ± arcsin ⁡ n λ N d , n = 1 , 2 , 3... \theta_0=\pm\arcsin\frac{n\lambda}{Nd},n=1,2,3... θ0=±arcsinNdnλn=1,2,3...













MATLAB仿真程序:

%f = 3e10;%确定频率
lambda = 1;%设置波长
%k = 2*pi/lambda;%传播常数表达式
theta1 = 0:pi/300:2*pi;%设定角度范围
theta2 = 0:pi/300:2*pi;
N = 6;%确定阵列元数
d = lambda./2;%设定间距
f1 = cos((pi/2).*sin(theta1))./cos(theta1);%半波振子方向图函数
f2_1 = sin((N*pi*d/lambda).*sin(theta2));
f2_2 = N.*sin((pi*d/lambda).*sin(theta2));
f2 = f2_1./f2_2;%阵因子方向图函数
rho = f1.*f2;%乘积定理
polarplot(theta2+pi/2,abs(rho),'b');%绘制极坐标方向图
title('6元等幅边射阵方向图')%标题

所以,当边射阵的间距发生改变时,阵因子方向函数、零点方向、极坐标方向图如下:

d = λ / 2 d=\lambda/2 d=λ/2

F a = sin ⁡ ( 3 π sin ⁡ θ ) 6 sin ⁡ ( π 2 sin ⁡ θ ) F_a= \frac{\sin(3\pi\sin\theta)} {6\sin(\frac{\pi}{2}\sin\theta)} Fa=6sin(2πsinθ)sin(3πsinθ)

θ 0 = ± arcsin ⁡ n 3 , n = 1 , 2 , 3... \theta_0=\pm\arcsin\frac{n}{3},n=1,2,3... θ0=±arcsin3nn=1,2,3...

0 ∘ ∼ 9 0 ∘ 0^\circ\sim90^\circ 090角域:

θ 0 = 19.4 7 ∘ 、 41.8 1 ∘ 、 9 0 ∘ \theta_0=19.47^\circ、41.81^\circ、90^\circ θ0=19.4741.8190

天线理论与设计_第五节作业_王怀帅_202018019427053

d = λ d=\lambda d=λ

F a = sin ⁡ ( 6 π sin ⁡ θ ) 6 sin ⁡ ( π sin ⁡ θ ) F_a= \frac{\sin(6\pi\sin\theta)} {6\sin(\pi\sin\theta)} Fa=6sin(πsinθ)sin(6πsinθ)

θ 0 = ± arcsin ⁡ n 6 , n = 1 , 2 , 3... \theta_0=\pm\arcsin\frac{n}{6},n=1,2,3... θ0=±arcsin6nn=1,2,3...

0 ∘ ∼ 9 0 ∘ 0^\circ\sim90^\circ 090角域:

θ 0 = 9.5 9 ∘ 、 19.4 7 ∘ 、 3 0 ∘ 、 41.8 1 ∘ 、 56.4 4 ∘ 、 9 0 ∘ \theta_0=9.59^\circ、19.47^\circ、30^\circ、41.81^\circ、56.44^\circ、90^\circ θ0=9.5919.473041.8156.4490

天线理论与设计_第五节作业_王怀帅_202018019427053

d = 0.8 λ d=0.8\lambda d=0.8λ

F a = sin ⁡ ( 4.8 π sin ⁡ θ ) 6 sin ⁡ ( 4 π 5 sin ⁡ θ ) F_a= \frac{\sin(4.8\pi\sin\theta)} {6\sin(\frac{4\pi}{5}\sin\theta)} Fa=6sin(54πsinθ)sin(4.8πsinθ)

θ 0 = ± arcsin ⁡ n 4.8 , n = 1 , 2 , 3... \theta_0=\pm\arcsin\frac{n}{4.8},n=1,2,3... θ0=±arcsin4.8nn=1,2,3...

0 ∘ ∼ 9 0 ∘ 0^\circ\sim90^\circ 090角域:

θ 0 = 12.0 2 ∘ 、 24.6 2 ∘ 、 38.6 8 ∘ 、 56.4 4 ∘ \theta_0=12.02^\circ、24.62^\circ、38.68^\circ、56.44^\circ θ0=12.0224.6238.6856.44

天线理论与设计_第五节作业_王怀帅_202018019427053




















3.3-5 分别利用式(3.3-56)和式(3.3-57)计算下列 N N N元等幅边射半波振子阵( d = λ / 2 d=\lambda/2 d=λ/2)的方向系数:

(1) N = 3 N=3 N=3,并列;

(1) N = 4 N=4 N=4,并列;

(1) N = 4 N=4 N=4,共轴;

并 列 : D = 1.64 N (3.3-56) 并列:D=1.64N \tag{3.3-56} D=1.64N(3.3-56)

共 轴 : D = N (3.3-56) 共轴:D=N \tag{3.3-56} D=N(3.3-56)

D = N 2 a 0 N + 2 k d ∑ m = 1 N − 1 ( a 1 sin ⁡ m k d + a 2 cos ⁡ m k d ) cos ⁡ m ψ (3.3-57) D=\frac{N^2}{a_0N+\frac{2}{kd}\sum_{m=1}^{N-1}(a_1\sin mkd+a_2\cos mkd)\cos m\psi} \tag{3.3-57} D=a0N+kd2m=1N1(a1sinmkd+a2cosmkd)cosmψN2(3.3-57)

N = 3 , 并 列 N=3,并列 N=3

利用式(3.3-56):
D = 1.64 N = 1.64 × 3 = 4.92 D=1.64N=1.64\times 3=4.92 D=1.64N=1.64×3=4.92

利用式(3.3-57):
D = 5.47 D=5.47 D=5.47

N = 4 , 并 列 N=4,并列 N=4

利用式(3.3-56):
D = 1.64 N = 1.64 × 4 = 6.56 D=1.64N=1.64\times 4=6.56 D=1.64N=1.64×4=6.56

利用式(3.3-57):
D = 7.49 D=7.49 D=7.49

N = 4 , 共 轴 N=4,共轴 N=4

利用式(3.3-56):
D = 4 D=4 D=4

利用式(3.3-57):
D = 4.30 D=4.30 D=4.30

3.3-7由 N = 7 N=7 N=7元半波振子组成的等幅边射共轴线阵(如图3.3-3所见), d = λ / 2 d=\lambda/2 d=λ/2,求 E E E面方向函数,概画方向图,并求 H P HP HP S L L SLL SLL及方向系数 D D D

天线理论与设计_第五节作业_王怀帅_202018019427053
F ( θ ) = F 1 ⋅ F a = cos ⁡ ( π 2 cos ⁡ θ ) sin ⁡ θ ⋅ sin ⁡ ( 7 π 2 sin ⁡ θ ) 7 sin ⁡ ( π 2 sin ⁡ θ ) F(\theta)=F_1\cdot F_a= \frac{\cos(\frac{\pi}{2}\cos\theta)}{\sin\theta}\cdot \frac{\sin(\frac{7\pi}{2}\sin\theta)} {7\sin(\frac{\pi}{2}\sin\theta)} F(θ)=F1Fa=sinθcos(2πcosθ)7sin(2πsinθ)sin(27πsinθ)

天线理论与设计_第五节作业_王怀帅_202018019427053
H P = 0.886 λ N d = 0.886 × 2 7 ≈ 0.253 HP=0.886\frac{\lambda}{Nd}=0.886\times\frac{2}{7}\approx0.253 HP=0.886Ndλ=0.886×720.253

S L L = − 13.5 d B SLL=-13.5dB SLL=13.5dB

D = N = 7 D=N=7 D=N=7

3.3-8 对上题 N = 7 N=7 N=7元半波振子等幅共轴线阵( d = λ / 2 d=\lambda/2 d=λ/2),今要求波束由边射方向 θ M = 0 ∘ \theta_M=0^\circ θM=0扫描到 θ M = 4 0 ∘ \theta_M=40^\circ θM=40

(1)求所需的相邻单元最大相移 ψ \psi ψ

(2)要求不出现栅瓣,对其间距 d d d有什么条件?

对于 N = 7 N=7 N=7元半波振子等幅共轴线阵,最大辐射角度为 θ M \theta_M θM的阵因子为:
u = k △ r + ψ = k d ( sin ⁡ θ − sin ⁡ θ M ) u=k\bigtriangleup r+\psi=kd(\sin\theta-\sin\theta_M) u=kr+ψ=kd(sinθsinθM)

F a = sin ⁡ [ N π d λ ( sin ⁡ θ − sin ⁡ θ M ) ] N sin ⁡ [ π d λ ( sin ⁡ θ − sin ⁡ θ M ) ] = sin ⁡ [ 7 π 2 ( sin ⁡ θ − sin ⁡ θ M ) ] 7 sin ⁡ [ π 2 ( sin ⁡ θ − sin ⁡ θ M ) ] F_a= \frac{\sin[\frac{N\pi d}{\lambda}(\sin\theta-\sin\theta_M)]}{N\sin[\frac{\pi d}{\lambda}(\sin\theta-\sin\theta_M)]}= \frac{\sin[\frac{7\pi}{2}(\sin\theta-\sin\theta_M)]}{7\sin[\frac{\pi}{2}(\sin\theta-\sin\theta_M)]} Fa=Nsin[λπd(sinθsinθM)]sin[λNπd(sinθsinθM)]=7sin[2π(sinθsinθM)]sin[27π(sinθsinθM)]

ψ = − k d sin ⁡ θ M = − π sin ⁡ 4 0 ∘ ≈ − 2.019 ≈ 115. 7 ∘ \psi=-kd\sin\theta_M=-\pi\sin40^\circ\approx-2.019\approx115.7^\circ ψ=kdsinθM=πsin402.019115.7

抑制栅瓣不出现的条件为:

d < λ 1 + ∣ cos ⁡ ( 9 0 ∘ − θ M ) ∣ = λ 1 + cos ⁡ 5 0 ∘ ≈ 0.609 λ d<\frac{\lambda}{1+|\cos(90^\circ-\theta_M)|}= \frac{\lambda}{1+\cos50^\circ}\approx0.609\lambda d<1+cos(90θM)λ=1+cos50λ0.609λ

严格要求栅瓣的主要部分不出现在可见区的条件为:

d < λ 1 + ∣ cos ⁡ ( 9 0 ∘ − θ M ) ∣ ( 1 − 1 2 N ) = 13 14 λ 1 + cos ⁡ 5 0 ∘ ≈ 0.565 λ d<\frac{\lambda}{1+|\cos(90^\circ-\theta_M)|}(1-\frac{1}{2N})= \frac{\frac{13}{14}\lambda}{1+\cos50^\circ}\approx0.565\lambda d<1+cos(90θM)λ(12N1)=1+cos501413λ0.565λ











3.3-10 对工作于 λ = 10 c m \lambda=10cm λ=10cm的8元等幅等距线阵,请根据表(3.3-5)算chauffeur下列线阵所需要的的元距 d d d条件:

(1)边射阵;

(2)端射阵;

(3)HW端射阵;

(1)扫描角(从端射反向算起) θ M = 3 0 ∘ \theta_M=30^\circ θM=30的扫描阵;

天线理论与设计_第五节作业_王怀帅_202018019427053
边射阵:

d < λ ( 1 − 1 2 N ) = 0.1 ( 1 − 1 16 ) ≈ 0.093 d<\lambda(1-\frac{1}{2N})=0.1(1-\frac{1}{16})\approx0.093 d<λ(12N1)=0.1(1161)0.093

端射阵:

d < λ 2 ( 1 − 1 2 N ) = 0.05 ( 1 − 1 16 ) ≈ 0.046 d<\frac{\lambda}{2}(1-\frac{1}{2N})=0.05(1-\frac{1}{16})\approx0.046 d<2λ(12N1)=0.05(1161)0.046

HW端射阵:

d < λ ( 1 − 1 N ) = 0.1 ( 1 − 1 8 ) ≈ 0.087 d<\lambda(1-\frac{1}{N})=0.1(1-\frac{1}{8})\approx0.087 d<λ(1N1)=0.1(181)0.087

扫描角(从端射反向算起) θ M = 3 0 ∘ \theta_M=30^\circ θM=30的扫描阵:

d < λ 1 + ∣ cos ⁡ θ M ∣ ( 1 − 1 2 N ) = 0.1 1 + 0.866 ( 1 − 1 16 ) ≈ 0.05 d<\frac{\lambda}{1+|\cos\theta_M|}(1-\frac{1}{2N})=\frac{0.1}{1+0.866}(1-\frac{1}{16})\approx0.05 d<1+cosθMλ(12N1)=1+0.8660.1(1161)0.05




3.3-11 移动通信基站天线通常采用铅锤架设的4元边射共轴等幅半波振子阵,以在水平面产生全向方向图,如图3.3-20所见。早期蜂窝电话频段为 824 ∼ 894 M H z 824\sim894MHz 824894MHz

(1)为获得最大方向图系数,参考式(3.3-66)和图3.3-14,选定元距 d = 0.8 λ 0 d=0.8\lambda_0 d=0.8λ0 λ 0 \lambda_0 λ0为中心频率的波长,求 d d d的值。设上、下端频的波长为 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2,分别求 d / λ 1 d/\lambda_1 d/λ1 d / λ 2 d/\lambda_2 d/λ2的值;

(2)利用式(3.3-57)分别算出 λ 0 \lambda_0 λ0 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2时的方向系数 D 0 D_0 D0 D 1 D_1 D1 D 2 D_2 D2

(3)写出 λ 0 \lambda_0 λ0时的x-z面方向函数,画出其极坐标方向图;利用图3.2-4算出 λ 0 \lambda_0 λ0时的方向系数;

λ 0 = c f 0 = 3 × 1 0 8 859 × 1 0 6 ≈ 0.35 \lambda_0=\frac{c}{f_0}=\frac{3\times10^8}{859\times10^6}\approx0.35 λ0=f0c=859×1063×1080.35

λ 1 = c f 0 = 3 × 1 0 8 824 × 1 0 6 ≈ 0.36 \lambda_1=\frac{c}{f_0}=\frac{3\times10^8}{824\times10^6}\approx0.36 λ1=f0c=824×1063×1080.36

λ 2 = c f 0 = 3 × 1 0 8 894 × 1 0 6 ≈ 0.34 \lambda_2=\frac{c}{f_0}=\frac{3\times10^8}{894\times10^6}\approx0.34 λ2=f0c=894×1063×1080.34

d = 0.8 λ 0 ≈ 0.28 d=0.8\lambda_0\approx0.28 d=0.8λ00.28

d / λ 1 = 0.28 0.36 ≈ 0.78 d/\lambda_1=\frac{0.28}{0.36}\approx0.78 d/λ1=0.360.280.78

d / λ 2 = 0.28 0.34 ≈ 0.82 d/\lambda_2=\frac{0.28}{0.34}\approx0.82 d/λ2=0.340.280.82

F ( θ ) = cos ⁡ ( π 2 cos ⁡ θ ) sin ⁡ θ ⋅ sin ⁡ ( 2 π sin ⁡ θ ) 6 sin ⁡ ( π 2 sin ⁡ θ ) F(\theta)= \frac{\cos(\frac{\pi}{2}\cos\theta)}{\sin\theta}\cdot \frac{\sin(2\pi\sin\theta)} {6\sin(\frac{\pi}{2}\sin\theta)} F(θ)=sinθcos(2πcosθ)6sin(2πsinθ)sin(2πsinθ)

天线理论与设计_第五节作业_王怀帅_202018019427053

本文地址:https://blog.csdn.net/qq_36976475/article/details/109261866