天线理论与设计_第五节作业_王怀帅_202018019427053
3.3-1 对下述间距的6元等幅边射阵 ( θ M = 0 (\theta_M=0 (θM=0, θ \theta θ角从阵法向算起),写出其阵因子方向函数,求出 0 ∘ ∼ 9 0 ∘ 0^\circ\sim90^\circ 0∘∼90∘角域的零点方向,并概画其极坐标方向图:
( 1 ) d = λ / 2 ; (1)d=\lambda/2; (1)d=λ/2;
( 1 ) d = λ ; (1)d=\lambda; (1)d=λ;
( 1 ) d = 0.8 λ ; (1)d=0.8\lambda; (1)d=0.8λ;
由题意知:
N = 6 N=6 N=6, ψ = 0 \psi=0 ψ=0, u = k △ r + ψ = k d sin θ u=k\bigtriangleup r+\psi=kd\sin\theta u=k△r+ψ=kdsinθ
阵因子方向函数:
F
a
=
sin
(
N
π
d
λ
sin
θ
)
N
sin
(
π
d
λ
sin
θ
)
=
sin
(
6
π
d
λ
sin
θ
)
6
sin
(
π
d
λ
sin
θ
)
F_a= \frac{\sin(\frac{N\pi d}{\lambda}\sin\theta)} {N\sin(\frac{\pi d}{\lambda}\sin\theta)}= \frac{\sin(\frac{6\pi d}{\lambda}\sin\theta)} {6\sin(\frac{\pi d}{\lambda}\sin\theta)}
Fa=Nsin(λπdsinθ)sin(λNπdsinθ)=6sin(λπdsinθ)sin(λ6πdsinθ)
因为单元天线采用半波阵子:
F ( θ ) = F 1 ⋅ F a = cos ( π 2 cos θ ) sin θ ⋅ sin ( 6 π d λ sin θ ) 6 sin ( π d λ sin θ ) F(\theta)=F_1\cdot F_a= \frac{\cos(\frac{\pi}{2}\cos\theta)}{\sin\theta}\cdot \frac{\sin(\frac{6\pi d}{\lambda}\sin\theta)} {6\sin(\frac{\pi d}{\lambda}\sin\theta)} F(θ)=F1⋅Fa=sinθcos(2πcosθ)⋅6sin(λπdsinθ)sin(λ6πdsinθ)
零点方向:
θ
0
=
±
arcsin
n
λ
N
d
,
n
=
1
,
2
,
3...
\theta_0=\pm\arcsin\frac{n\lambda}{Nd},n=1,2,3...
θ0=±arcsinNdnλ,n=1,2,3...
MATLAB仿真程序:
%f = 3e10;%确定频率
lambda = 1;%设置波长
%k = 2*pi/lambda;%传播常数表达式
theta1 = 0:pi/300:2*pi;%设定角度范围
theta2 = 0:pi/300:2*pi;
N = 6;%确定阵列元数
d = lambda./2;%设定间距
f1 = cos((pi/2).*sin(theta1))./cos(theta1);%半波振子方向图函数
f2_1 = sin((N*pi*d/lambda).*sin(theta2));
f2_2 = N.*sin((pi*d/lambda).*sin(theta2));
f2 = f2_1./f2_2;%阵因子方向图函数
rho = f1.*f2;%乘积定理
polarplot(theta2+pi/2,abs(rho),'b');%绘制极坐标方向图
title('6元等幅边射阵方向图')%标题
所以,当边射阵的间距发生改变时,阵因子方向函数、零点方向、极坐标方向图如下:
d = λ / 2 d=\lambda/2 d=λ/2:
F a = sin ( 3 π sin θ ) 6 sin ( π 2 sin θ ) F_a= \frac{\sin(3\pi\sin\theta)} {6\sin(\frac{\pi}{2}\sin\theta)} Fa=6sin(2πsinθ)sin(3πsinθ)
θ 0 = ± arcsin n 3 , n = 1 , 2 , 3... \theta_0=\pm\arcsin\frac{n}{3},n=1,2,3... θ0=±arcsin3n,n=1,2,3...
0 ∘ ∼ 9 0 ∘ 0^\circ\sim90^\circ 0∘∼90∘角域:
θ 0 = 19.4 7 ∘ 、 41.8 1 ∘ 、 9 0 ∘ \theta_0=19.47^\circ、41.81^\circ、90^\circ θ0=19.47∘、41.81∘、90∘
d = λ d=\lambda d=λ:
F a = sin ( 6 π sin θ ) 6 sin ( π sin θ ) F_a= \frac{\sin(6\pi\sin\theta)} {6\sin(\pi\sin\theta)} Fa=6sin(πsinθ)sin(6πsinθ)
θ 0 = ± arcsin n 6 , n = 1 , 2 , 3... \theta_0=\pm\arcsin\frac{n}{6},n=1,2,3... θ0=±arcsin6n,n=1,2,3...
0 ∘ ∼ 9 0 ∘ 0^\circ\sim90^\circ 0∘∼90∘角域:
θ 0 = 9.5 9 ∘ 、 19.4 7 ∘ 、 3 0 ∘ 、 41.8 1 ∘ 、 56.4 4 ∘ 、 9 0 ∘ \theta_0=9.59^\circ、19.47^\circ、30^\circ、41.81^\circ、56.44^\circ、90^\circ θ0=9.59∘、19.47∘、30∘、41.81∘、56.44∘、90∘
d = 0.8 λ d=0.8\lambda d=0.8λ:
F a = sin ( 4.8 π sin θ ) 6 sin ( 4 π 5 sin θ ) F_a= \frac{\sin(4.8\pi\sin\theta)} {6\sin(\frac{4\pi}{5}\sin\theta)} Fa=6sin(54πsinθ)sin(4.8πsinθ)
θ 0 = ± arcsin n 4.8 , n = 1 , 2 , 3... \theta_0=\pm\arcsin\frac{n}{4.8},n=1,2,3... θ0=±arcsin4.8n,n=1,2,3...
0 ∘ ∼ 9 0 ∘ 0^\circ\sim90^\circ 0∘∼90∘角域:
θ 0 = 12.0 2 ∘ 、 24.6 2 ∘ 、 38.6 8 ∘ 、 56.4 4 ∘ \theta_0=12.02^\circ、24.62^\circ、38.68^\circ、56.44^\circ θ0=12.02∘、24.62∘、38.68∘、56.44∘
3.3-5 分别利用式(3.3-56)和式(3.3-57)计算下列 N N N元等幅边射半波振子阵( d = λ / 2 d=\lambda/2 d=λ/2)的方向系数:
(1) N = 3 N=3 N=3,并列;
(1) N = 4 N=4 N=4,并列;
(1) N = 4 N=4 N=4,共轴;
并 列 : D = 1.64 N (3.3-56) 并列:D=1.64N \tag{3.3-56} 并列:D=1.64N(3.3-56)
共 轴 : D = N (3.3-56) 共轴:D=N \tag{3.3-56} 共轴:D=N(3.3-56)
D = N 2 a 0 N + 2 k d ∑ m = 1 N − 1 ( a 1 sin m k d + a 2 cos m k d ) cos m ψ (3.3-57) D=\frac{N^2}{a_0N+\frac{2}{kd}\sum_{m=1}^{N-1}(a_1\sin mkd+a_2\cos mkd)\cos m\psi} \tag{3.3-57} D=a0N+kd2∑m=1N−1(a1sinmkd+a2cosmkd)cosmψN2(3.3-57)
N = 3 , 并 列 N=3,并列 N=3,并列:
利用式(3.3-56):
D
=
1.64
N
=
1.64
×
3
=
4.92
D=1.64N=1.64\times 3=4.92
D=1.64N=1.64×3=4.92
利用式(3.3-57):
D
=
5.47
D=5.47
D=5.47
N = 4 , 并 列 N=4,并列 N=4,并列:
利用式(3.3-56):
D
=
1.64
N
=
1.64
×
4
=
6.56
D=1.64N=1.64\times 4=6.56
D=1.64N=1.64×4=6.56
利用式(3.3-57):
D
=
7.49
D=7.49
D=7.49
N = 4 , 共 轴 N=4,共轴 N=4,共轴:
利用式(3.3-56):
D
=
4
D=4
D=4
利用式(3.3-57):
D
=
4.30
D=4.30
D=4.30
3.3-7由 N = 7 N=7 N=7元半波振子组成的等幅边射共轴线阵(如图3.3-3所见), d = λ / 2 d=\lambda/2 d=λ/2,求 E E E面方向函数,概画方向图,并求 H P HP HP、 S L L SLL SLL及方向系数 D D D。
F
(
θ
)
=
F
1
⋅
F
a
=
cos
(
π
2
cos
θ
)
sin
θ
⋅
sin
(
7
π
2
sin
θ
)
7
sin
(
π
2
sin
θ
)
F(\theta)=F_1\cdot F_a= \frac{\cos(\frac{\pi}{2}\cos\theta)}{\sin\theta}\cdot \frac{\sin(\frac{7\pi}{2}\sin\theta)} {7\sin(\frac{\pi}{2}\sin\theta)}
F(θ)=F1⋅Fa=sinθcos(2πcosθ)⋅7sin(2πsinθ)sin(27πsinθ)
H
P
=
0.886
λ
N
d
=
0.886
×
2
7
≈
0.253
HP=0.886\frac{\lambda}{Nd}=0.886\times\frac{2}{7}\approx0.253
HP=0.886Ndλ=0.886×72≈0.253
S L L = − 13.5 d B SLL=-13.5dB SLL=−13.5dB
D = N = 7 D=N=7 D=N=7
3.3-8 对上题 N = 7 N=7 N=7元半波振子等幅共轴线阵( d = λ / 2 d=\lambda/2 d=λ/2),今要求波束由边射方向 θ M = 0 ∘ \theta_M=0^\circ θM=0∘扫描到 θ M = 4 0 ∘ \theta_M=40^\circ θM=40∘
(1)求所需的相邻单元最大相移 ψ \psi ψ;
(2)要求不出现栅瓣,对其间距 d d d有什么条件?
对于
N
=
7
N=7
N=7元半波振子等幅共轴线阵,最大辐射角度为
θ
M
\theta_M
θM的阵因子为:
u
=
k
△
r
+
ψ
=
k
d
(
sin
θ
−
sin
θ
M
)
u=k\bigtriangleup r+\psi=kd(\sin\theta-\sin\theta_M)
u=k△r+ψ=kd(sinθ−sinθM)
F a = sin [ N π d λ ( sin θ − sin θ M ) ] N sin [ π d λ ( sin θ − sin θ M ) ] = sin [ 7 π 2 ( sin θ − sin θ M ) ] 7 sin [ π 2 ( sin θ − sin θ M ) ] F_a= \frac{\sin[\frac{N\pi d}{\lambda}(\sin\theta-\sin\theta_M)]}{N\sin[\frac{\pi d}{\lambda}(\sin\theta-\sin\theta_M)]}= \frac{\sin[\frac{7\pi}{2}(\sin\theta-\sin\theta_M)]}{7\sin[\frac{\pi}{2}(\sin\theta-\sin\theta_M)]} Fa=Nsin[λπd(sinθ−sinθM)]sin[λNπd(sinθ−sinθM)]=7sin[2π(sinθ−sinθM)]sin[27π(sinθ−sinθM)]
ψ = − k d sin θ M = − π sin 4 0 ∘ ≈ − 2.019 ≈ 115. 7 ∘ \psi=-kd\sin\theta_M=-\pi\sin40^\circ\approx-2.019\approx115.7^\circ ψ=−kdsinθM=−πsin40∘≈−2.019≈115.7∘
抑制栅瓣不出现的条件为:
d < λ 1 + ∣ cos ( 9 0 ∘ − θ M ) ∣ = λ 1 + cos 5 0 ∘ ≈ 0.609 λ d<\frac{\lambda}{1+|\cos(90^\circ-\theta_M)|}= \frac{\lambda}{1+\cos50^\circ}\approx0.609\lambda d<1+∣cos(90∘−θM)∣λ=1+cos50∘λ≈0.609λ
严格要求栅瓣的主要部分不出现在可见区的条件为:
d < λ 1 + ∣ cos ( 9 0 ∘ − θ M ) ∣ ( 1 − 1 2 N ) = 13 14 λ 1 + cos 5 0 ∘ ≈ 0.565 λ d<\frac{\lambda}{1+|\cos(90^\circ-\theta_M)|}(1-\frac{1}{2N})= \frac{\frac{13}{14}\lambda}{1+\cos50^\circ}\approx0.565\lambda d<1+∣cos(90∘−θM)∣λ(1−2N1)=1+cos50∘1413λ≈0.565λ
3.3-10 对工作于 λ = 10 c m \lambda=10cm λ=10cm的8元等幅等距线阵,请根据表(3.3-5)算chauffeur下列线阵所需要的的元距 d d d条件:
(1)边射阵;
(2)端射阵;
(3)HW端射阵;
(1)扫描角(从端射反向算起) θ M = 3 0 ∘ \theta_M=30^\circ θM=30∘的扫描阵;
边射阵:
d < λ ( 1 − 1 2 N ) = 0.1 ( 1 − 1 16 ) ≈ 0.093 d<\lambda(1-\frac{1}{2N})=0.1(1-\frac{1}{16})\approx0.093 d<λ(1−2N1)=0.1(1−161)≈0.093
端射阵:
d < λ 2 ( 1 − 1 2 N ) = 0.05 ( 1 − 1 16 ) ≈ 0.046 d<\frac{\lambda}{2}(1-\frac{1}{2N})=0.05(1-\frac{1}{16})\approx0.046 d<2λ(1−2N1)=0.05(1−161)≈0.046
HW端射阵:
d < λ ( 1 − 1 N ) = 0.1 ( 1 − 1 8 ) ≈ 0.087 d<\lambda(1-\frac{1}{N})=0.1(1-\frac{1}{8})\approx0.087 d<λ(1−N1)=0.1(1−81)≈0.087
扫描角(从端射反向算起) θ M = 3 0 ∘ \theta_M=30^\circ θM=30∘的扫描阵:
d < λ 1 + ∣ cos θ M ∣ ( 1 − 1 2 N ) = 0.1 1 + 0.866 ( 1 − 1 16 ) ≈ 0.05 d<\frac{\lambda}{1+|\cos\theta_M|}(1-\frac{1}{2N})=\frac{0.1}{1+0.866}(1-\frac{1}{16})\approx0.05 d<1+∣cosθM∣λ(1−2N1)=1+0.8660.1(1−161)≈0.05
3.3-11 移动通信基站天线通常采用铅锤架设的4元边射共轴等幅半波振子阵,以在水平面产生全向方向图,如图3.3-20所见。早期蜂窝电话频段为 824 ∼ 894 M H z 824\sim894MHz 824∼894MHz。
(1)为获得最大方向图系数,参考式(3.3-66)和图3.3-14,选定元距 d = 0.8 λ 0 d=0.8\lambda_0 d=0.8λ0, λ 0 \lambda_0 λ0为中心频率的波长,求 d d d的值。设上、下端频的波长为 λ 1 \lambda_1 λ1和 λ 2 \lambda_2 λ2,分别求 d / λ 1 d/\lambda_1 d/λ1和 d / λ 2 d/\lambda_2 d/λ2的值;
(2)利用式(3.3-57)分别算出 λ 0 \lambda_0 λ0、 λ 1 \lambda_1 λ1、 λ 2 \lambda_2 λ2时的方向系数 D 0 D_0 D0、 D 1 D_1 D1、 D 2 D_2 D2;
(3)写出 λ 0 \lambda_0 λ0时的x-z面方向函数,画出其极坐标方向图;利用图3.2-4算出 λ 0 \lambda_0 λ0时的方向系数;
λ 0 = c f 0 = 3 × 1 0 8 859 × 1 0 6 ≈ 0.35 \lambda_0=\frac{c}{f_0}=\frac{3\times10^8}{859\times10^6}\approx0.35 λ0=f0c=859×1063×108≈0.35
λ 1 = c f 0 = 3 × 1 0 8 824 × 1 0 6 ≈ 0.36 \lambda_1=\frac{c}{f_0}=\frac{3\times10^8}{824\times10^6}\approx0.36 λ1=f0c=824×1063×108≈0.36
λ 2 = c f 0 = 3 × 1 0 8 894 × 1 0 6 ≈ 0.34 \lambda_2=\frac{c}{f_0}=\frac{3\times10^8}{894\times10^6}\approx0.34 λ2=f0c=894×1063×108≈0.34
d = 0.8 λ 0 ≈ 0.28 d=0.8\lambda_0\approx0.28 d=0.8λ0≈0.28
d / λ 1 = 0.28 0.36 ≈ 0.78 d/\lambda_1=\frac{0.28}{0.36}\approx0.78 d/λ1=0.360.28≈0.78
d / λ 2 = 0.28 0.34 ≈ 0.82 d/\lambda_2=\frac{0.28}{0.34}\approx0.82 d/λ2=0.340.28≈0.82
F ( θ ) = cos ( π 2 cos θ ) sin θ ⋅ sin ( 2 π sin θ ) 6 sin ( π 2 sin θ ) F(\theta)= \frac{\cos(\frac{\pi}{2}\cos\theta)}{\sin\theta}\cdot \frac{\sin(2\pi\sin\theta)} {6\sin(\frac{\pi}{2}\sin\theta)} F(θ)=sinθcos(2πcosθ)⋅6sin(2πsinθ)sin(2πsinθ)
本文地址:https://blog.csdn.net/qq_36976475/article/details/109261866