欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  数据库

Hive分析窗口函数(五) GROUPING SETS,GROUPING__ID,CUBE,ROLLUP

程序员文章站 2022-04-06 19:13:25
...

1.GROUPING SETS与另外哪种方式等价? 2.根据GROUP BY的维度的所有组合进行聚合由哪个关键字完成? 3.ROLLUP与ROLLUP关系是什么? GROUPING SETS,GROUPING__ID,CUBE,ROLLUP这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统

1.GROUPING SETS与另外哪种方式等价?
2.根据GROUP BY的维度的所有组合进行聚合由哪个关键字完成?

3.ROLLUP与ROLLUP关系是什么?


GROUPING SETS,GROUPING__ID,CUBE,ROLLUP 这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。 Hive版本为 apache-hive-0.13.1 数据准备:
    2015-03,2015-03-10,cookie1
    2015-03,2015-03-10,cookie5
    2015-03,2015-03-12,cookie7
    2015-04,2015-04-12,cookie3
    2015-04,2015-04-13,cookie2
    2015-04,2015-04-13,cookie4
    2015-04,2015-04-16,cookie4
    2015-03,2015-03-10,cookie2
    2015-03,2015-03-10,cookie3
    2015-04,2015-04-12,cookie5
    2015-04,2015-04-13,cookie6
    2015-04,2015-04-15,cookie3
    2015-04,2015-04-15,cookie2
    2015-04,2015-04-16,cookie1

    CREATE EXTERNAL TABLE lxw1234 (
    month STRING,
    day STRING,
    cookieid STRING
    ) ROW FORMAT DELIMITED
    FIELDS TERMINATED BY ','
    stored as textfile location '/tmp/lxw11/';


    hive> select * from lxw1234;
    OK
    2015-03 2015-03-10      cookie1
    2015-03 2015-03-10      cookie5
    2015-03 2015-03-12      cookie7
    2015-04 2015-04-12      cookie3
    2015-04 2015-04-13      cookie2
    2015-04 2015-04-13      cookie4
    2015-04 2015-04-16      cookie4
    2015-03 2015-03-10      cookie2
    2015-03 2015-03-10      cookie3
    2015-04 2015-04-12      cookie5
    2015-04 2015-04-13      cookie6
    2015-04 2015-04-15      cookie3
    2015-04 2015-04-15      cookie2
    2015-04 2015-04-16      cookie1

GROUPING SETS
在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL
    SELECT
    month,
    day,
    COUNT(DISTINCT cookieid) AS uv,
    GROUPING__ID
    FROM lxw1234
    GROUP BY month,day
    GROUPING SETS (month,day)
    ORDER BY GROUPING__ID;

    month      day            uv      GROUPING__ID
    ------------------------------------------------
    2015-03    NULL            5       1
    2015-04    NULL            6       1
    NULL       2015-03-10      4       2
    NULL       2015-03-12      1       2
    NULL       2015-04-12      2       2
    NULL       2015-04-13      3       2
    NULL       2015-04-15      2       2
    NULL       2015-04-16      2       2


    等价于
    SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month
    UNION ALL
    SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day

再如:
    SELECT
    month,
    day,
    COUNT(DISTINCT cookieid) AS uv,
    GROUPING__ID
    FROM lxw1234
    GROUP BY month,day
    GROUPING SETS (month,day,(month,day))
    ORDER BY GROUPING__ID;

    month         day             uv      GROUPING__ID
    ------------------------------------------------
    2015-03       NULL            5       1
    2015-04       NULL            6       1
    NULL          2015-03-10      4       2
    NULL          2015-03-12      1       2
    NULL          2015-04-12      2       2
    NULL          2015-04-13      3       2
    NULL          2015-04-15      2       2
    NULL          2015-04-16      2       2
    2015-03       2015-03-10      4       3
    2015-03       2015-03-12      1       3
    2015-04       2015-04-12      2       3
    2015-04       2015-04-13      3       3
    2015-04       2015-04-15      2       3
    2015-04       2015-04-16      2       3


    等价于
    SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month
    UNION ALL
    SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
    UNION ALL
    SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day

其中的 GROUPING__ID,表示结果属于哪一个分组集合。

CUBE
根据GROUP BY的维度的所有组合进行聚合。
    SELECT
    month,
    day,
    COUNT(DISTINCT cookieid) AS uv,
    GROUPING__ID
    FROM lxw1234
    GROUP BY month,day
    WITH CUBE
    ORDER BY GROUPING__ID;


    month                              day             uv     GROUPING__ID
    --------------------------------------------
    NULL            NULL            7       0
    2015-03         NULL            5       1
    2015-04         NULL            6       1
    NULL            2015-04-12      2       2
    NULL            2015-04-13      3       2
    NULL            2015-04-15      2       2
    NULL            2015-04-16      2       2
    NULL            2015-03-10      4       2
    NULL            2015-03-12      1       2
    2015-03         2015-03-10      4       3
    2015-03         2015-03-12      1       3
    2015-04         2015-04-16      2       3
    2015-04         2015-04-12      2       3
    2015-04         2015-04-13      3       3
    2015-04         2015-04-15      2       3



    等价于
    SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM lxw1234
    UNION ALL
    SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month
    UNION ALL
    SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
    UNION ALL
    SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day

ROLLUP
是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。
    比如,以month维度进行层级聚合:
    SELECT
    month,
    day,
    COUNT(DISTINCT cookieid) AS uv,
    GROUPING__ID  
    FROM lxw1234
    GROUP BY month,day
    WITH ROLLUP
    ORDER BY GROUPING__ID;

    month                              day             uv     GROUPING__ID
    ---------------------------------------------------
    NULL             NULL            7       0
    2015-03          NULL            5       1
    2015-04          NULL            6       1
    2015-03          2015-03-10      4       3
    2015-03          2015-03-12      1       3
    2015-04          2015-04-12      2       3
    2015-04          2015-04-13      3       3
    2015-04          2015-04-15      2       3
    2015-04          2015-04-16      2       3

    可以实现这样的上钻过程:
    月天的UV->月的UV->总UV

复制代码

    --把month和day调换顺序,则以day维度进行层级聚合:

    SELECT
    day,
    month,
    COUNT(DISTINCT cookieid) AS uv,
    GROUPING__ID  
    FROM lxw1234
    GROUP BY day,month
    WITH ROLLUP
    ORDER BY GROUPING__ID;


    day                                month              uv     GROUPING__ID
    -------------------------------------------------------
    NULL            NULL               7       0
    2015-04-13      NULL               3       1
    2015-03-12      NULL               1       1
    2015-04-15      NULL               2       1
    2015-03-10      NULL               4       1
    2015-04-16      NULL               2       1
    2015-04-12      NULL               2       1
    2015-04-12      2015-04            2       3
    2015-03-10      2015-03            4       3
    2015-03-12      2015-03            1       3
    2015-04-13      2015-04            3       3
    2015-04-15      2015-04            2       3
    2015-04-16      2015-04            2       3

    可以实现这样的上钻过程:
    天月的UV->天的UV->总UV
    (这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)